
NASA-CR-191220

Research Institute for Advanced Computer Science
NASA Ames Research Center

• i

_ /

/ -- ,

t

Introduction to I N D

and Recursive Partitioning

WRAY BUNTINE

Unc 1 -_,

01_!i306

RIACS Technical Report 91.23

September 1991

Introduction to I N D

and Recursive Partitioning

RIACS TR 91.23

WRAY BUNTINE

The Research Institute of Advanced Computer Science is operated by

Universities Space Research Association, The American City Building, Suite 212,
Columbia, MD 21044, (301)730-2656

Work reported herein was supported in part by Coopertive Agreement NCC2-387 between the

National Aeronautics and Space Administration (NASA) and

The Universities Space Research Association (USRA)

Work was perfomed at the Research Institute for Advanced Computer Science (RIACS),

NASA Ames Research Center, Moffett Field, California 94035-1000

Introduction to IND and Recursive Partitioning

Wray Buntine, RIACS

Rich Caruana, SJSU/NASA

NASA Ames Research Center

Mail Stop 269-2

Moffet Field, CA 94035

Version 1.0

September 23, 1991

Copyright (_) 1991 Research Institute for Advanced Computer Science.

Abstract

This manual describes the IND package for learning tree classifiers from data. The package is an

integrated C and C shen re-implementation of tree learning routines such as CART, C4, and various

MDL and Bayesian variations. The package includes routines for experiment control, interactive

operation, and analysis of tree building. The manual introduces the system and its many options,

gives a basic review of tree]earning, contains a guide to the literature and a glossary, lists the

manual pages for the routines, and instructions on installation.

Contents

Preface

2

Getting Started
1.1

1.2

1.3

1.4

2.2

2.3

I-I

About This Manual 1-2

Decision Trees I-3

IND - An Overview 1-4

A Session with mkbld, mktree, and tprlnt 1-5

1.4.1 Creating the Training Set 1-5

1.4.2 Building a Tree 1-7

1.4.3 A First Look at Controlling Tree Generation 1-9

A Tour of IND 2-I

2.1 Introduction .. 2-2

Option Passing in IND 2-2

Building Trees 2-3

2.3.1 Splitting Criteria 2-3

2.3.2 Stopping Rule Options 2-3

2.3.3 Pruning Options 2-4

2.3.4 Prior Options 2-4

2.3.5 User Override Mode 2-4

2.4 Miscellaneous Options 2-5

2.4.1 Data Handling Options 2-5

2.4.2 Tree Evaluation Options 2-6

2.4.3 Classifying a New Example 2-6

2.4.4 Tree Display Options 2-6

2.4.5 Tree Editing 2-7

2.4.6 Handling Attributes with Unknown Values 2-8

2.4.7 Echoing Shell Scripts 2-8

2.4.8 Comparative Trials 2-8

2.5 Standard IND Option Sets 2-9

2.5.1 CART Style 2-9

2.5.2 C4 Style 2-9

2.5.3 Minimum Encoding Style 2-9

2.5.4 lqayes 2-10

2.5.5 Option Trees 2-10

CONTENTS

2.6 Choosing Options 2-11

2.6.1 Prior knowledge 2-11

2.6.2 Benchmark methods 2-11

2.6.3 Appropriateness of Trees 2-11

2.6.4 Parsimony or Understsndibility 2-11

3 Learning Tree Classifiers 3-I

3.I Introduction .. 3-2

3.2 Introduction to Lesrning Classifiers 3-2

3.3 Trees .. 3-2

3.3.1 Recursive partitioning 3-3

3.3.2 Stopping rules 3-4

3.3.3 Splitting rules 3-4

3.3.4 Pruning methods 3-6

3.3.5 Handling Unknown Attribute Values 3-9

3.3.6 An Example of Growing a Tree 3-10

3.4 A Guide to the Literature 3-12

3.4.1 Extended Representations 3-13

3.4.2 Extended Search and Altern,_te Growing Methods 3-13

3.4.3 Incremental Growing Methods 3-14

3.4.4 Theoretical Developments 3-14

3.4.5 Support for the Knowledge Engineer 3-14

4 IND Man Pages 4-1

4.1 Introduction .. 4-2

4.2 The Man Psges 4-2

4.2.1 attn_outes(1) 4-3

4.2.2 bclass(1) 4-5

4.2.3 hgen(1) 4-6

4.2.4 mkbld(1) 4-7

4.2.5 mkd(1) 4-8

4.2.6 mkclean(1) 4-9

4.2.7 mktree(1) 4-10

4.2.8 smnple(1) 4-12

4.2.9 tchar(1) 4-13

4.2.10 tclass(1) 4-15

4.2.11 tgen(1) 4-17

4.2.12 tgendts(1) 4-20

4.2.13 thesd(1) 4-21

4.2.14 tprint(1) 4-22

4.2.15 tprune(1) 4-24

4.2.16 ttest(1) 4-26

4.2.17 xgraph(1) 4-28

CONTENTS

5 Installing IND 5-I
5.1 Introduction

• . • • . • . . • • , • o 5°2

5.2 Overview of the IND Directory 5-2

5.3 Installing the Code 5-2

5.4 Warnings 5-3
• * • . • * . • * . * • • . • • . ° . • . • . • o

5.5 Planned -Extensions 5-3

5.6 Contact and Reporting Your Use of IND 5-4

5 Bibliography 5-4

A Glossary A- 1

B Copyright B-1

CONTENTS

Preface

IND is a collection of C programs and C shell scripts for generating, testing, and using decision

trees, class probability trees, and Bayes classifiers. IND is research software and is currently under

development. First time users or those interested in obtaining the package should see the companion

document "About the IND Tree Package _ by Wray Buntine. Further copies of this manual or other

related technical reports can be obtained by contacting:

mail:

post:

indOkronos.arc.nasa.gov

IN]) Tree Package

C/O Wray Buntine, RIACS and Code FIA

Mail Stop 269-2

NASA Ames Research Center

Mofleett Field, CA, 94035

The package comes withNO WARRANTY ofany kind,and may not be distributedtoany other

party.The copyrightforthe package isthe standard RIACS softwarecopyrightand isdescribedin

Appendix B.

IND was builton top ofan earlymite ofsoRware developedat BassetDepartment ofComputer

Scienceat Sydney Universityby a lineageofstudentsofJason Catlett:David Harper, Murray Dean,

David Muller and Chris Carter,and others.Some earlyaman" entriesand bitsand piecesof the

code where alsodone by Chris Carter while at the Universityof Technology,Sydney. The only

program or filethat remains largelyintactisIND/Util/sample. All othershave been recoded and

restructuredto a large degree,except for the asymbol" structurein SYM.h and itsassociated

routines.We are particularlyindebted to Jason Catlett'sstudentsfor creatinga foundation upon

which tobuild,and to Ross Quinlan forprovidingthe environment and ideason which thepackage

isbased.

IND was developed by Wray Buntine,whileat S.O.C.S.,UniversityofTechnology Sydney {'88-

'89),Taring Institute('89)and StrathclydeUniversityin Glasgow ('89),and code FIA, NASA

Ames Research Center and RIACS ('90).More recently('91),Rich Caruana helped make the

package more presentablewhileon a mm_aner internshipat NASA-Ames Research Center on leave

from Carnegie Mellon University.

Naturally,any deficienciesin the currentsoftwarewillbecome our responsibility,not the earlier

contributors.Thanks to the variousorganizationsabove for supportingWray Buntine'sresearch

and to the San Jose State University/NASA-Ames Research Center Research and Development

Program for supportingRich Caruana's internship.Thanks to RIACS and NASA Ames Research

Center formaking the package available.

PREFACE

Chapter 1

Getting Started

1-1

1-2 CHAPTER 1. GETTING STARTED

1.1 About This Manual

This manual is an introduction and reference manual for IND. IND is a collection of programs for

generating, testing, and using clusification trees and Bayes classifiers. For those not familiar with

the tree literature, this manual contains an introduction to tree learning methods, a glossary, and

a comprehensive bibliography. For those wishing to install the system, details are given in the last
chapter, and copyright detalk in Appendix B.

Chapter I introduces first-time users to the IND software and documentation. The introduction

includes an overview of this manual, a casual introduction to decision trees, a survey of the IND

software, and a few sample sessions where decision trees for the hypothyroid data set are built and

tested using IND. By the way, trees come in two forms, decision trees and cla._s probability trees,

where the latter replace "decisions" at the leaves with "class probabilities".

Chapter 2 surveys the more important IND runtime options. It demonstrates many of the

standard IN]) option sets typically used when generating certain styles of trees (e.g. Bayes Trees,

ID3 Trees, CART Trees). For those who are new to trees, this chapter provides useful suggestions

about different ways of generating and testing trees using IND. For those who are already familiar

with tree analysis, this section will quickly fxmiliarize you with IND's options and show you how

to make IND do the standard tricks. This section also provides advice on how to choose between

the different methods available for the problem yon are considering.

Chapter 3 is a technical introduction to decision tree methods. It is an expanded version of

"An Introduction to Recursive Partitioning" written by Wray Buntine while at the Turing Institute.

Those who are less experienced will find that this section provides a concise summary of decision tree

methods and introduces much of the notation and many of the basic concepts required for informed

use of IND. Subsequent sections of this document, as well as the man pages for IND, assume that

the user is familiar with some of the methods discussed in the section. The experienced decision

tree builder may wish to browse through the literature guide at the end. This has been fairly

hastely thrown together so new entries are always welcome.

Chapter 4 is a copy of the man pages for IND routines. Note that it is not essential that the user

be familiar with all routines for which there are man pages. The beginning of Chapter 4 suggests

which man pages are likely to be useful to the typical user. Some other man pages are included

for completeness, but probably win only be needed by users who intend to modify the software to
make it do new tricks.

Chapter 5 contains instructions for installing IND on your machine. If IND has already been

installed for you by someone else, and if you do not intend to modi_.: IND to make it do new tricks

(or fix an old trick), you can safely ignore this section. Otherwise_ : suggest installing IND before

reading beyond section 1.4, so that you can work through the example. This chapter also contains

a brief description of where different things are located in the IND subdirectories.

Appendix A is & glossary of the terms used throughout this documentation and in the IND

man pages. It may also be useful to those who have read Chapter 3, or are familiar with other tree

literature, but need to reference the meauing of some terms.

The bibliography included in this manual is fairly extensive. Since IND is a research software

package (as opposed to & commercial software package) and is not tutorial, some users may have to

consult some of these references in order to fully understand some of the methods available within

IND and their motivations or limitatious. For instance, some of IND's innovative features, the

Bayesian and MDL components, are based on work descried in [7, 5].

1.2. DECISION TREES

1.2 Decision Trees

1-3

Decision trees are c]assiliers that represent their classification knowledge in _tree" form. Each

interior node of a decision tree is a test on an attribute. Satisfying that test causes the instance

being classified to take one branch out of that node, failing the test causes the instance to take

the other branch. A decision tree is used to classify an instance by starting at the root node of

the decision tree and following the path the attribute tests dictate until s lest" node is encountered.

Each leaf node in a decision tree is a decision, i.e., represents a classification. An instance that

ends up at some particular leaf node is classified with the class assigned to that leaf node.

For example, a decision tree for diagnosing the flu (see figure 1.1) might have leaf nodes labeled

FLU and NO_FLU and might use attribute tests (on interior nodes), such as, TEMP < 100F?,

• toma_h_upaet?, and headache?. Each test on an attribute causes the particular instance being

classified (in this case an individual with a set of symptoms) to follow one of the branches leaving

that node. Eventually, since the decision tree has finite depth, the instance will end up in a leaf

node labeled either FLU or NO_FLU (There may be many leaf nodes with the same label.). If

the instanceends up in one of the leafnodes labeledFLU, then the decision,of the decisiontree

forthatinstance,isthat the individualdoes indeedhave the flu.

TEMP

Figure I.I:A simpledecisiontreefordiagnosingthe flu

A second kind of tree is a class probability tree. This has a vector of class probabilities at each

leaf instead ors decision. For instance, the top left leaf in figure I.I has the decision no NO_FLU.

This could instea_i be the probability vector (0.77, O,23) (notice the elements in the vector sum to

1.0) which would represent "the probability of NO_FLU is 6.77, the probability of FLU is 0.23".

This kind of tree is explained further in Section 3.3.

Vv'hen we refer to "trees n, we usual]y mean decision trees, elass probability trees, or both,

whichever is more appropriate.

IND - An Overview

CHAPTER 1. GETTING STARTED

1ND is a collection of progranu for generating, testing, and using trees. IND provides a potentially

bewildering number of options to allow the user to precisely control how data is interpreted, how

trees are grown and tested, and how results are displayed. This section is a simple overview of IND.

It is intended to introduce the new user to the IND programs and to show the typical (and usually

simplest) ways to run IND. More detailed information about IND can be found in the man pages

for the rations routines. The next chapter provides short-cuts for users who would like to use IND

in specific modes.

IND consists of four basic kinds of routines: data manipulation routines, tree generation rou-

tines, tree testing routines, and tree display routines. The data manipulation routines are used to

partition a single large data set into smaller training and test sets. The generation routines are

used to build classifiers. The test routines are used to evaluate classifiers and to classify data using

a classifier. And the display routines are used to display classifiers in various formats.

IND contains many low-level C programs that implement the basic services and a few higher-

level shell scripts that encapsulate these basic services into a more user-friendly package. It is

possible to use IND by directly calling the low-level manipulatiou, generation, test, and display

programs, but this is rarely necessary; t},-_ higher-level control scripts are the correct level of
abstraction for many applications of IND.

The basic control scripts in IND are mkbld, mktree, and another useful C progra_n is tprint.

There are a few even higher-level scripts that can ran these basic control scripts for you, but

understanding the basic scripts is important to using IND so we begin by introducing them.

mkbld is a control script that takes a data set and splits it into a trs_ni=_: and test set. The

training set is used for building the tree, and the test set is used for evaluating the performance of

the tree. mkbld is smart enough to automatically uncompress and recompress data sets (or even

build the data set using shell scripts) and allows the user to specify the sizes of the training and

test set and the sampling method to use when generating them.

mktree is a control script that takes a training set sad builds trees for it. mktree builds

trees by calling an assortment of other programs that actually build the trees ('tgen'), prune them

('tprune"), and test them ('class"). mktree has many different options that control what methods

are used to build, prune, and evaluate the trees. Tree building options include things like what

the maximum tree depth should be, and what splitting rule to use (e.g., Bayes, information-gain,

etc.). Tree pruning options include depth-bounded pruning with cost-complexity, pessimistic or

minimum errors pruning. Tree testing options allow the user to select from several different kinds

of performance measures and, for example, to control whether or not instances are classified by

utility or by maximum likelihood, mktree passes many of the options specified to it directly to

the programz it runs for you, so using the full power of mktree does require familiarity with the

tgen, tprune, and tclass programs.

tprlnt takes a tree built by mktree and displays various kinds of information about it. For

example, tprlnt can display the final probabilities associated with each leaf node, it can display

the counts for each class at lea/" nodes as well as at interior nodes, and it can even handle attributes

with unknown values in any of several dLq'erent ways when accumulating these counts. Of course,

tprint can also pretty-print a tree in a human-readable format on a terminal.

1.4. A SESSION WITH MKBLD, MKTREE, AND TPRINT 1-5

1.4 A Session with mkbld, mktree, and tprint

In this section we demonstrate the use of IND to build and test a tree for hypothyroidism. The

data set we use is the now classic hypothyroid database appearing in [33].

1.4.1 Creating the Training Set

The hypothyroid data set is contained in two files in the subdirectory IND/Data/thyroid, the

attribute_file and the data_file. The attribute_file, hypo.attr, contains a description of the features of

the data set and any special instructions on how to interpret them. For example, hypo.attr specifies

that age is a real-valued attribute on the interval [0,100] and that sex is an ordinal-valued attribute

with values M or F. The attribute file, also specifies that the classes we are trying to predict are

primary_hypothyroid, _,econdar|/.hypothyroid, compensated_hypothyroid, and negative (i.e., no

hypothyroidism). The format of the attribute file is described in the man page attributes(I).

The file hypo.dta contains the hypo data set itself. Each line in this file is a single instance from

the domain, coded in the language defined by the attribute file. The data set is compressed (using

the UNIX "compress" command) in order to save space. Compressing data sets is optional.

Since each line in hypo.dtais an example from the domain, we can count the number of examples

by passing an uncompressed copy of it to wc, the UNIX wordcount program:

_. zcat hypo.dta [wc

3772 113160 306174

From this we can tell that there are 3,7?2 examples in the hypo data set. The last few examples
look like this:

7. zcat hypo.dta [tail

negative 21 F f f f f t f f f f f f t f f t 0.2 t 2.S t 108 t 1.13 t 96 f ? STMW

negative 82 !/ :t f f

primary_hypothyroid

negative 73 F f f f

negative 76 M f f f

negative 68 M f f f

negative 71M f f f

negative 64 F t f f

negative 50 g f f f

negative 43 F f f

f f f f f f f f f f f t 0.016 t 2.7 t 122 t 0.83 t 147 f ? other

78 F f f f f f f f t f f f f f f t 26 t 0.9 t $0 t 0.84 t 60 f ? SVI

f f f f f f f f f f f t 0.96 t 2.5 t 119 t 1.04 t 114 f ? other

f f f f f f f f f f f t 0.69 t 2.3 t 138 t 1.04 t 133 f ? SVI

f f f f f f f f f f f t 4.8 t 2.1 t 107 t 0.99 t 108 f ? other

f f f f f f f f f f f t 0.1 t 1.4 t 120 t 0.87 t 138 f ? other

f f f f f f f f f f f t 0.1 f ? t 123 _ 0.74 t 166 f ? other

f f f f f f f f f f f t 0.4 _ 2.8 t 94 t 0.88 t 106 f ? SVHC

f f f f f f f f f f f t 2 t 1.8 t 121 t 0.94 t 129 f ? SVHC

Note that the first entry for each example is the classification for this example. Only one of these
examples has primary hypothyroidism. The rest of the entries on each line are the values of the

attributes in the sequence defined in the hypo.attrfile. The fields with "?" mean the corresponding
attribute value is missing. The attribute file contains the following:

cat hypo.attr

class:

age:
sex:

on_thyroxine:

compensated_hypothyroid,negative,

primary_hypothyroid,secondary_hypothyroid.

cont 0..100.

F,K.

f,t.

1-6 CHAPTER 1. GETTING STARTED

query_on_thyroxine: f, t.

on_ant $thyro2d__ed2cat ion:

sick: f ,1;.

proEnant : f ,1;.

1;hyroid_surgery: f, _.

I131_tre&_mon1; : f,_.

query_hypothyrold: f, t.

query_hyperthyroid: f, 1:.

lt1;hium: f01;.

gol_ro: f ,1;.

1;umor: f, 1;.

hypopl1:ul1;ary: f,1;.

psych: f,1;.

TSH_measured: f, 1;.

TSH : con_ O.. 600.

T3_neasured: f, 1;.

T3: con1: 0.. 100.

TT4_neasured: f, 1;.

TT4: con1: 0.. 800.

T4_moasurod: f, 1;.

T4: con_ O.. 3.

FTI_measured: f, 1:.

FTI : cont O..400.

TBG_measurod: f ,1;.

TBG: con1; O.. 100.

rof offal_source:

_t1:.

STMV, SVHC, SVBD, SVI, VEST, o1:hor.

Now we see that the first example listed above has an age of 21, is female, is not on thyroxine,

etc. For more details about the format of the attribute file, see the man page attributesC1).

Now that we are casually familiar with the format of the attribute file and the data file, let's

build a tree. First, let's split the data set into s training set and a test set using mkbld. The

tralnln 8 set will be used to build the tree, and the test set will be used to test it. Let's use 2000

examples for the training set and let the rest fall in the test set:

Z nkbld hypo 2000
678757306

7. vc hypo.bld

2000 60000 162371 hypo.bld

gc hypo. 1:s1;

1772 53160 143803 hypo.1;81:

As we can see,2000 examples went intothe filehppo.bM, and the remaining 1772 ended up in

hypo.tst.Note that mkbld sampled the originaldata base of examples, it did not justcopy the

first2000 examples to one fileand the last1772 to the other.

The number mkbld printedout was the random seeditused forthe random number generator

that controlledthe ssmpl;ng. Ifwe rerun mkbld and giveitthisseed (M an optionalargument),

itwillperform an identicalpartitioning.This allowsus to exactlyreplicatean experiment. Ifyou

ran mkbld as instructedabove (i.e.,without specifyinga seed),then mkbld probably returned a

1.4. A SESSION WITH MKBLD, MKTREE, AND TPI%INT 1-7

different seed than the one shown above and the sampling will be somewhat different. If you whh

to exactly replicate the example described here, rerun mkbld specifying the seed used above:

mkbld hypo 2000 678757306

678757306

1.4.2 Building a Tree

In the last section we created a training file (the ".bid" file) and a test file (the ".tst"). Now let's

build a tree using mktree. For now, we_d ignore rnktree's ability to automatically prune the tree

it generates and its ability to automatically run the test set through the tree. That is we will just

tell mktree to bui]d the tree. Let's build the tree using the GINI index of diversity as the splitting

criterion (it's ok if you don't know what that is, chapter 3 explains it) and limit the depth of the

induced tree to four.

7. n_tree -o "-d4 -g" hypo

The "-o" argument to mktree says that the arguments that follow it in quotes should be passed

directly to tgen, the program that actually generates the tree. The final argument to mktree,

h_/po, is the stem name. mktree assumes that files named ster_.attr and stem.bld exist and creates

a file called 8tern.tree that ¢ontxlnt the induced tree.

Note that mktree did not print anything. The results of its labor are in the ".treec" file. To

see the tree use tprlnt:

tprint hypo.attr hypo.traec
TSH < 6.05:

I TT4 < 48.5:

I J TSH < 3.5: negative

{ J TSH >= 3.5: 8econdLvT_hypothyroid

J TT4 >= 48.5: negative
TSH >= 6.05:

FTI < 63:

age < 17.5: negative

age >= 17.5:

J age < 84.5:

I J T3 < 2.68: primary_hypothyroid

J J 1"3 >= 2.65: negative

J age >= 84.5: negative

FTI >= 63:

on_thyroxlne = f:

I T4 < 1.675:

[I FTI < 183: coal_nsatod_hypothyroid

I J FTI >= 183: negative

J T4 >ffi 1.675: negative

on_thyroxine ffi t: negative

As commanded, mktree has limited the depth of the tree to four. The root tests to see if TSH

is less than 6.05 or not. If it is, the next test is to see if TT4 is less than 48.5. If this is so, then

the next test is to see of TSH is below 3.5. If all three of these tests are true for an example, then

1-8 CHAPTER 1. GETTING STARTED

that example wm be classh_ed as negative. Other tests used in the tree are on age, FTI, T4, and

whether or not the patient was using thyroxine.

So now let's prune this tree using pessimistic pruning and, after the pruning is complete, convert

the class counts at each leaf to probabilities (Converting leaf counts to probabilities is needed for

many subsequent stqes ofprocessh_, e.8. , for tree smoothing and even to compute the statistical

summaries of tree performance. Currently, tprune is where this conversion is done, so you wm

usually want to _prune" a tree after growing it, even if you do not specify pruning options that

actually reduce the s/se of the tree.). Esther than using tprune to prune the tree, let's rerun

mktree and specify the pruning options that will be passed to tprune when mktree calls it for

us."

_. nktree -o "-d4 -g" -p "-b -e" hypo

. tprin hypo.al:tr hypo.tree

TSH < 8.0S: negative
TSH >- 6.05:

I FTI < 63: pr2mary_hypothyrotd
l FTZ >• 63:

I I on_thyroxln@ = f: compenaated_hypothyrold
I I on_thyroxine = t: negal;tve

Notice that the tprint command this time printed the tree in "hypo.tree" rather than in

"hypo.treec'. The distinction is important. The file Uhypo.treec" stores the original unpruned tree

and has example counts rather than probabilities stored at its leaves. Pruning converts this tree to

the second tree stored in "hypo.tree" which we have printed in this case.

Pessimistic pruning may he well named: it pruned most of the tree! But we don't yet know

which tree, the original unpruned tree or the new pruned tree, is likely to perform better on future

examples drawn from th/s domain. So let's test the trees on the data we held aside specifically for

this purpose. Again, rather than use tclass, the routine that actually performs the testing, let's

reinstruct mktree to not only build and prune the tree, but to also to test it.

_, nktree -o "-d4 -g" -p "-b" -c "-s" hypo
Percenl:ago accuracy for _reo 1 • 98.8149 ÷/- 0.257073
l(ean square error for tree 1 • 0.0208581
Expected accuracy for tree I = 98.1178

_. nktroo -o "-d4 -g" -p "-b -e'* -¢ "-s" hypo

Percentage accuracy for tree :1 = 98.9278 +/- 0.244665

Moan square error for tree 1 = 0.020488

l_-xpocted accuracy _or tree :1 • 98.0391

Note that in the first run of mktree we specified only that the leaf nodes be converted to

probabilities, but not that pessimistic pruning be done. In the second run we did specify pessimistic

pruning. Looking at the performance summary for the two trees, we see that pessimistic pruning

did not apparently injure the performance of the tree when tested on the 1772 examples in the test

set. In fact, it may have improved the performance somewhat. This is not surprising, trees that

are not pruned often overfit the training data.

For those of you not running these examples as you read, a Spare I takes about 15 seconds

to generate and test these trees, most of this time being spent in the generation stage. On some

1.4. A SESSION WITH MKBLD, MKTREE, AND TPtLINT 1-9

problems, the testing stage can be the most time-consuming. Obviously, regenerating the tree each

time we change a pruning option is not very efficient. Why don't we first generate the tree, then

prune it (sending the pruned tree to a separate file so that the unpruned tree is still there to be

tested) and then, test the two trees? This is, in fact, easy to do using the routines tgen, tprune,

and tclass. And if yon have been reading about the options we've been using, you've already

discovered that you must go to the man pages for these routines to know what options to select;

the man page for mktree does not describe them. But typically, when you grow a tree you also

need to prune it and evaluate it, and the ways of doing this are quite stylized. Because of this,

mktree is usually the most convenient level of abstraction for using IND. It might seem a little

awkward at first, but you quickly get used to. Moreover, the options used for pruning often depend

on how the tree was generated, and the options used for testing the tree often depend on when it

was generated and pruned, so it does make some sense to specify them all at one time.

1.4.3 A First Look at Controlling Tree Generation

Now that you are convinced that mktree is usualJy easier than separately running tgen, tprune,

and tclass, let's do one last thing with mktree. Specifically, let's tell mktree to generate trees of

depth 1, 2, and 3 and see how wen they perform without subsequent pruning:

_. mk_reo -o "-dO -g" -p "-b '° -c "-s" hypo

Percentage accuracy for tree t = 95.0339 +/- 0.51608

Mean square error for tree 1 = 0.0627282

Expected accuracy for tree 1 = 95.2003

tprtnt hypo.attr hypo.tree

TSH < 6.05: negative

TSH >= 6.05: compensated_hypothyroid

mktree -o "-dl -g" -p "-b" -c "-e" hypo

Percentage accuracy for tree 1 = 97.$169 +/- 0.36966

Nean square error for tree 1 = 0.037|818

Expected accuracy for tree 1 = 96.8403

tprtnt hypo.attr hypo.tree

TSH < 8.05:

[TT4 < 48.S: negative

[TT4 >ffi 48.5: negative

TSH >= 6.05:

I FTI < 63: pr:Lmary_hypothyrotd

I FTI >= 63: cozrpensated_hypothyrotd

% mktree -o "-d2 -g" -p "-b" -c "-s" hypo

Percentage accuracy for tree 1 = 98.702 +/- 0.268883

Noah square error for tree ! = 0.022251

Expected accuracy for tree I = 97.9641

_print hypo.attr hypo.tree

TSH < 6.05:

1-10 CHAPTER 1. GETTING STAI_TED

I

I
I

I

¢SH

TT4 < 48.S:

I TSH < 3.5: nega¢4ve
I TSH >z 3.S: sJecondary_h_othy'rotd

TT4 >= 48.S: nega¢tve
>: 6.06:

FTI < 63:

J qe < :17.5: nega¢$ve
I qo >= 17.6: prt_u__hypothyrotd
rl'I >" 63:

I on_thycox4ne • f : ¢om]penlal;od_hypochyz'oid

I on_¢hyz'ox:Lne = ¢: aegat;ivo

Obviously, we lose considerable performance by forcing the tree to be only one or two tests deep.

Interestingly, the tree that is three tests deep performs worse than the smaller tree that resulted

from pessimistic pruning. This is not an anomaly. Pruning a tree that has "overfit" the data often

yields a better tree than simply restricting tree depth to try to prevent over/itting; pruning does

not have to return trees of uu_orm depth and it is safer to eliminate a branch after it has proven

ineffective, than it is to not expand some node before knowing if subsequent tests in the branch

might make that branch useful. Of course it is not a simple matter to determine if a branch is

"ineffective"; with the sometimes small amount of data appearing in the branch this is a complex

statistical problem. Prior knowledge also comes into play. For instance, if you are sure that typical

accuracy in prediction cannot be above 70% no matter which example is observed, and many leaves

in the current branch have an accuracy of 90% (not uncommon if the tree was grown to fit the

data) then it wonld make sense to do some heavy pruning.

Chapter 2

A Tour of IND

2-1

2-2 CHAPTER 2. A TOUR OF IND

2.1 Introduction

Chapter 1 concluded with a session where we used IND to generate, prune, and test a few simple

trees. In this chapter we flex IND's muscles a bit more. This chapter discusses IND options in

detail, presents a series of IND demonstration runs, and presents a few standard sets of options

that allow IND to simulate some aspects of other tree induction programs, such as ID3 or CART.

This is the chapter that shows what IND can do. We begin by discussing option passing in IND.

Then we discuss different kinds of IND options in more detail sad, where helpful, demonstrate those

options through sample runs with the hypothyroid database. We present a few different standard

option sets that make IND behave similar to other tree induction programs. Finally we review

some factors to consider when applying IND to a problem of your own.

2.2 Option Passing in IND

As we saw in Chapter I, shell scripts such as mktree automatically run lower-level IND routines
like tgen, tprune, and tclau for you. mktree passes some of the runtime arguments given to
it directly to these lower-level routines. The options to be passed to these routines are specified

with three flags: -o, -p, and -c. These flags introduce the options for tgen, tprune, and tclass,
respectively. The options you wish to pass follow these flags, usually as a string enclosed in quotes.
It is important to include "-" signs in these option strings. An example will make this clearer.
Suppose we wish to run mktree, telling it to use tgen options "-g", "-U 3", and "-d 4", to use
tprune options "-b" and "-e", and to use telass options "-g", "-p", and "-s". While we're at it,
let's also specify the mktree options "-a" and "-D". This could be specified in severs/different
ways, two of which axe:

Lktroo -a -D -o "-g -U 3 -d 4" -p "-b -o" -c "-g -p -s" hypo

ak_:roo -a-D -o "-gU3 -d4" -p -be -c -gps hypo

Notice that in the second, options without arguments are strung together. The following ways,
however, are incorrect:

aktroe -aD -o "-g -U 3 -d 4" -p "-b -e" -¢ "-Spa" hypo
aktree -a -D -o "-gU3-d4" -p "-bo" -c "-gp8" hypo

The first is incorrect because of "-aD": neither mkbld, mktree or ttest can string option argu-

ments together. The second is incorrect because the option argument to %o" has no space after
the "Y.

The option -D tells mktree display the commands it executes. This option is supported by

most IND shell scripts and is very handy when debugging or when learning how to use IND.

Running either of the correct commands invokes the following sequence of commands:

l_=4t datasiz@ 12m

limit s_acksize 12n

liu'tt cputtJSe 2000
tgen -g -U 3 -d 4 hypo.attr hypo.bld ./hypo.trusc
tprunu -b -u hypo.attr ./hypo._resc
av ./hypo. treuc.p ./hypo.tree
tchar hypo.attr ./hypo.tree ./hypo. ctr

tclass -g -p -s hypo.attr ./hypo.tree hypo.tst

2.3. BUILDING TREES 2-3

The limit commands restrict how long tgen can run and how much memory it can use. tgen

wKl quit gracefully when any of these limits are exceeded. Note that if you run either form of the

mktree command above, you will see a lot of shell execution detail that has been deleted from the

execution sequence printed above. This "sanitization" was done only to make it easier to see what

IND commands mktree is executing.

2.3 Building Trees

IND is capable of building and using several different kinds of trees. The basic tree is a conventional

decision tree using perhaps the GINI index of diversity as its splitting rule (i.e. , it uses the GI]VI

to determine which test to install when expanding a node). But IND can also generate other kinds

of trees. For example, IND can use a Bayes splitting rule instead of the GIN] index of diversity

and, thereby, build Bayes trees. IND can generate option trees which are a representation of many

alternative trees in an and-or structure, see Section 2.5.5. This section briefly examines the various

types of trees available in IND.

2.3.1 Splitting Criteria

IND can use several different criteria when evaluating the quality of different tests. The available

options include the GINI index of diversity (U.g.), the Bayes splitting nile (u-t"), and information

gain (the default).

Lookahead during splitting is invoked with the "-B" option to tgen. This starts a depth-
bounded beam search to look for the best node. You should only do this with the Bayes splitting

rule. For instance, U-tB3,5,0.00001" does 3-ply lookahead with a beam width of 5, and at each

search point only expanding nodes within a factor 0.00001 of the best.

IND allows multi-valued attributes to be binary encoded with the "-$2" option in tgen. This

means if a multi-valued attribute A has 6 values, 0,1,2,3,4,5, then instead of producing a test A?

on the attribute with 6 outcomes, depending on the value of A, allow one of 6 tests of the form

A = 37, with outcomes true and falJe.

IND also allows subsetting of multi-valued attributes with the "-SO" option in tgen. This

means if a mnlti-valued attribute A has 6 values, 0,1,2,3,4,5, then instead of producing a test A?

on the attribute with 6 outcomes, depending on the value of A, allow one of many tests of the form

A G {I, 3, 5} or A E {0, 5} with outcomes tT'ue and faIJe.

2.3.2 Stopping Rule Options

tgen and, therefore mktree, can be told to limit tree depth to a certain size. This is done with

tgen's "-d depth" option. Note that a depth of zero means that the tree has only one attribute

test (at the root node), a depth of one means that there is a subsequent level of attribute tests just
below the root node test, etc. See section 1.4 for an example of building trees with different depth

bounds.

Another stopping rule is tgen's "-s rain" option. A node with fewer examples is automatically
made s lea/'.

Various Upre-pruning" stopping rules can also be programmed using tgen's "-J" option with
the leaf-fact factor, when growing Bayes trees. To do pre-pruning of Bayes trees use:

2-4 CHAPTER 2. A TOUR OF IND

lktree -o "-tJI,0.005,0.75,1.0" -p -b -c -slvg hypo

The factors u0.005,0.75" are search parameters and not important in this case. The 1 in "-Jl" says

we are doing Bayes trees and not option trees; option trees have multiple (optional) tests. The

pre-pruning factor here is the 1.0. Use a factor of 1.0 to stop when the best test is as good as the

lea/', a smal/er factor is more cautious in stopping, a larger factor pre-prunes more severely.

2.3.3 Pruning Options

Cost-complex/ty pruning, for various reasons, is done in tgen, see Section 2.5.1, but can also be

done with the _-c" and u-V" options in tprune. Pesshnistic pruning is done with the _-e" option

to tprune and m;nim,lm errors pruning with the "-M" option.

Other tree operations which perform the same service as pruning are smoothing, the "-b" option

to tprune, which averages over pruned subtrees, and choosing the mATimllm a posterior tree using

the "-B" option to tprune. In general the U-b" option should give better class probability estimates

but can be slower. These methods should be used along with careful use of the prior options. See
Section 2.5.4, 2.5.3 and 2.6.1.

2.3.4 Prior Options

IND can be primed to handle three different kinds of prior knowledge when growing trees.

Structural constraints: The contexts feature (see the man entry attr_tesC1)) allows structural

constraints to be specified on the forms of trees that can be built.

Preference for simpler trees: Typically you might have expectations such as: there are many
irrelevant attributes; all attributes give some guide as to the class; a small classifier should

perform quite well, etc. In these cases you should set the "-P" option carefully.

Typical prediction accuracies: What sort of predictions do you expect to make about class?

In some cases you know accurate prediction is very di_cult, in other's accurate prediction

should be quite feasible. The U-A" option should be used here.

Without use of the u.p, option, you are saying ape/or that all trees are equally likely. This means

you do not believe there are many irrelevant attributes, and in fact you believe molt attributes

contribute somehow to the class. Using "-P-0.693,-0.693" for a binary tree corresponds to saying

that adding a new test instead of a leaf makes the resultant tree 4 times less likely. Using "-P0,-

0.693" for a binary tree corresponds to saying that a tree with 6 leaves is as twice as likely apewr

as a tree with 7 leaves, and 8 = 23 times more likely than a tree with 9 leaves. Using _-P-0.693,-

0.693,02" corresponds to an even more extreme preference for smaller trees, as typically done when

"encoding" a tree.

The setting of the _p_ parameter to the tree prims is done with the option "-A alpha". We set
this parameter _rom our apewr expectations about class probabilities at leaf nodes. If you expect

leaf nodes to be highly accurate in their predictions, then you should use "-AI". This means you

expect to see class probabilities at leaf nodes to be extreme (i.e., one class will have a probability

near one and all the others will be low). If you have no expectation that probabilities will be either

low or high, then you have uniform prior. In this case set "-A2" in the two-class case, "-A4" in

the four-class case, etc. If you expect prediction accuracies to be poor, and to be little changed

2,4. MISCELLANEOUS OPTIONS 2-5

from the base rateclassprobabilities,then use an even highervalueof alpha,such as "-A6" in the

two-classcase,or "-A12" in the four-classcase,etc.

2.3.5 User Override Mode

A powerful option provided by tgen is "-o', the manual controloption. This option allows the user

to manuatly overide all decisions as each node is expanded and to examine some of the statistical

information tgen has computed for each possible test. This allows you to figure out why tgen

decided to install some particular test st some particular node. More importantly, it also allows

you to controlwhat testto installat particularnodes. In thisway you can manually build a tree

using tgen to supply you with relevantstatisticalinformation,but reservingthe actualdecision

making foryourself.The resultwillbe a treeinthe syntaxappropriateforIND thatyou have been

able to exertcontrolover.Itispossibleto use manual controlto buildentiretree,but thiscould

be tedious.Fortunately,you have the optionof allowingtgen to installthe testitwould pickat

any node, and even to have tgen complete growing specificsubtreesby itself.A sample execution

traceusing manual controlisshown below.

7. tgen -or hypo.attr hypo.bld hypo.tree

Interact: (type 'h' for help): h

Interact ion:

'n _ = no, continlle _roei_,

's' ffi no interaction for subtree, 'e' ffi none for parent tree.

Modify groeing:

'a' = abort groeing and save tree so far,

'c' = choose a test at this node, 'f' = force leaf.

Reports on this node:

'l' : list tests at node, 'o' ffi give report on options,

'g' : print gains, _e' : print error est.

'r' : give full report on current stored tests,

'xS ffitoggle on/off plotting of attribute gains,

'k' = kill attribute gain graphs.

Reports on tree:

'q' = print subtree so far, 'p' = print tree so far,

'u' : print statistics on tree so far,

Interact? (type 'h' for help):

2.4 Miscellaneous Options

2.4.1 Data Handling Options

Most of IND's data handling options apply to mkbld and are fairly well explained in the mkbld

and sample man pages. We'll mention a few of them here just so you know what is available.

By default, mkbld does sampling without replacement (unless the data set is in a ".all" file;

see the man page attributes(1)). With the "-r" option you can tell it to sample with replacement.

With the option "-pm i", mkbld can be told to partition the data set (in the ".dta" file) into

m partitions and to use the i-th such partition as a test set (the ".tst" file) and the remaining m-1

partitions as the training set (the ".bid" file). With the option "-P m i", mkbld will partition

the ".bld" file itself as described. The "-p" option is useful when training on the entire sample

2-6 CHAPTER2. A TOUR OF IND

and you wish to use a (somewhat slow implementation of) cross-validation to estimate the error.
The second in useful when doing cross-validation error estimation in comparative studies where one

often looks at performance on subsamples.

With the "-c proportion" option, tgen can be told to use peoport_on of the examples as the

training set and the remaining as the test set for cost-complexity pruning. The default proportion

is 0.7.

2.4.2 Tree Evaluation Options

IND provides a number of performance measures and summary statistics to Lid in evaluating a

tree.
If you would like to evaluate how a tree performs on a particular test set, then use the "-t"

option in tprlnt, as well as other options you might like. For instance use:

tprlnt -bp -t hypo.tst hypo

This will print out the class probabilities used by the classifier tclass at each lea/', together with a

breakdown of how the test set "hypo.tst" faired on each leaf in the tree.

If you have grown several different trees using different splitting rules, and you would like to
estimate which would be the better tree, then you can use the log. posterior measure printed out

using "thead -s hypo.tree" or "tclass -g ...". This is particularly useful when working with Bayes

trees or option trees which have been grown specifically to maximise this measure. If memory or

CPU limits were overran during tree growing, then it is important to check the log. posterior to

ensure the tree grown is reasonable by comparison.

Finally trees grown by a specific method (e.g., CART-like or C4-1ike) can be compared by using

the cross-validation or repeated resamp]ing features of treat.

2.4.3 Classifying a New Example

Given s new unclassified example, or a set of the same, you may wish to use IND to predict the
class or estimate s class prob&bility vector for the new example. Do this as fonows: place the
example as & single line in a file as you would for the data used to grow a tree. Suppose this is in

"hypo.new".

% ca1; hypo.nee

neg&l;ive 78 F :f f f f f f f 1; f f f f f f 1; 25 t 0.9 t 80 1; 0.84 1_ 60 f ? SVI

Notice that the new example has been assigned the (arbitrary) legal class value negative, however,

this is just to prevent tclass from complaining, and will be ignored. Now run

$class --dp hypo.at_r hypo.$rn hypo.nei
pri_aary_hypothyrold 0.0200611+0.0423564+0.917523+0.0200598

The first field printed is the predicted class. The second set of fields is the class probability vector.
Notice the third probability is the largest so tc]au has predicted the third class listed in the file

"hypo.attr", which is l_.imm'¥_hylm_fh_'oid. If in addition, the "-v" option is used with tclass,
then posterior variances are printed as well. These estimates are usua_y improved with the U-b"

option to tprune and with careful choice of the prior options when using Bayes trees or optl-_n
trees.

2.4. MISCELLANEOUS OPTIONS 2-7

2.4.4 Tree Display Options

Various details of a tree can be printed out. The most important detail to print is a basic decision

tree. Suppose we have just built a tree using the Bayes splitting rule and Bayesian smoothing:

nktree -o -t -p -b hypo

To find out what the basic decision tree generated looks like we can run either of the commands

tprint hypo

tprint hypo. attr hypo.tree

This takes the class probability tree stored in the binary file "hypo.tree" and displays the tree as

was done in Section 1.4. The single form requires only specification of the stem. The double form

allows you to display a tree stored in some other file, such as a counts tree "hypo.treec'.
The class probability tree would be printed using "tprint -p hypo". If the tree has been

smoothed using the "-b" option in tprune then you should really do "tprint -bp hypo". The
first form prints the class probabilities at that node. The second form prints the probabilities that
would be used during classification (these are different only for a smoothed tree, i.e. one pruned
using tprune -b), but is implemented in a rather slow manner. Print them both out and compare
on a few simple trees. Use "tprint -ipq hypo" to find out how the calculations differ. This would

yield a tree like:

Y. nktree -o -td3 -p -b hypo

tprint -ipq hypo

0.04092 0.9336 0.02445 0.000998 negative (LO)

TSH < 6.05: 0.0006109 0.9976 0.0006109 0.001222 (I.0.999999)

FTI < 338: 0.0006423 0.9981 0.0006423 0.0006423 (Ll.4157e-06)

FTI >= 338: 0.0119 0.9524 0.0119 0.02381 (L6.65085e-07)

J query_hypothyroid = f: 0.0125 0.9625 0.0125 0.0125 (L7.50643e-07)

[query_hypothyroid = t: 0.125 0.8 0.125 0.25 (L4.41564e-07)
J [sex = F: 0.1667 0.8 0.1667 0.1667 (L3.09088e-07)

[J sex = N: 0.1667 0.3333 0.1667 0.3333 (LS.O9088e-07)

TSH >= 6.05: 0.221 0.6442 0.1321 0.002695 (LO)

TSH_,,ensured = 5: 0.004878 0.9854 0.004878 0.004878 (L1)

TSH_,,eaeured = t: 0.4824 0.2235 0.2882 0.005882 (LO)

FTI < 64.5: 0.01887 0.09434 0.8679 0.01887 (L0.434369)

I thyroid_-,urgery = 5: 0.02041 0.06122 0.898 0.02041 (L0.868631)

J thyroid_surgery = t: 0.125 0.378 0.378 0.125 (L0.565631)
FTI >= 64.5: 0.6777 0.281 0.03306 0.008264 (L8.46707e-18)

I on_thyroxlne = 5: 0.8723 0.07447 0.04255 0.01064 (L1)
I on_thyroxlne = t: 0.03226 0.9032 0.03226 0.03226 (LI)

The weights printed in brackets after the "L" indicate the posterior probability that this node

will be a leaf. tprune and tclass use these weights to compute the weighted average of the

class probability vectors along a branch. For instance, examples falling down the branch with test

outcome TSH < 6.05 all use the probability vector for that top node, (0.0006109 0.9976 0.0006109

0.001222), because the weight for that node is 0.999999.
Class counts themselves can be printed using "tprint -c hypo.attr hypo.treec". Notice the class

counts tree "hypo.treec" needs to be used, not the class probability tree "hypo.tree". If you find

the tree is way too large, then you might like to print it out only to a fixed depth, such as depth 2

using "tprlnt -ciD2 hypo'. Option "-i" in this case ensures internal nodes will have details printed
as well as the leaf nodes.

2-8 CHAPTER2. A TOUR OF 1ND

2.4.5 Tree Editing

You can always edit a grown tree using tchar. To do this, first convert the tree to character format

using tchar. Then delete/change nodes as you see fit. The character format of the tree is explained

in the manual entry tchar(l) sad you can see it yourself by printing the same tree using tprint and

comparing. Finally, convert the tree back using tchar -a. If you are working with an unpruned

(counts) tree, then it is safer to use "tchar -ac" as this will check and correct all the intermediate

node counts for you.

2.4.6 Handling Attributes with Unknown Values

Trees have trouble with attributes that sometimes have unknown values: which branch do we send

the example down if the example does not have a value specified for the attribute to be tested

at the test node? Yet in some domains (e.g. , Medical Diagnosis) it is completely impractical to

require that each patient have every test performed. IND does not implement the "surrogate test"

feature of CART to handle missing values, however it does have a number of different ways. The

default is a method that performs fairly well in general if you do not wish to be concerned with the
other variations.

IND can handle examples with unknown attribute values in a number of ways. By default (tgen

-U1) IND sends the example down each branch with the proportion found in the training set at

that node. In effect, IND splits the example into fractions] examples, with the larger piece going

down the branch most of the data follows. (This does not pose any conceptual problems because

all that is really needed at leaf nodes is the count for each class, and it doesn't matter very much

if that count contains fractional examples.)

Instead of the default, IND can handle unknown attributes by sending the example down the

branch of the tree most commonly taken by other examples. In effect, IND is assuming the missing

attribute value is the same as the most commcm value seen for that attribute, at that node, in the

training data. IND can also be told to send examples with unknown attribute values down the

branch chosen with probability proportional to that found in the training set at that node. That

is, if 80 percent of the examples at this node with known attribute values take the left branch,

IND will send an example with an unknown attribute value down the left branch 80% of the time.

Alternatively, IND can send the entire example down the branch that most of the examples went

down, or it can send the entire example down a single branch picked with probability equal to that

of the proportion of examples that went down that branch.

IND's way of dealing with unknowns is uniform between the dLq'erent routines, i.e. , the same

options are available in tgen, tprune, and tclass and they are al] specified the same way. See

the man page for tgen to see how to select from the different options. If you are using mktree,

be sure to specify the same option for generating, pruning, and testing unless you real]y want to

handle unknowns differently in the different phases.

2.4.7 Echoing Shell Scripts

Many IND she/] scripts accept option -D. This causes them to echo the shell commands they

execute. This is quite useful for debugging and aho for learning more about the IND routines at
the lower level of abstraction.

2.5. STANDARD IND OPTION SETS 2-9

2.4.8 Comparative Trials

IND provides a framework for doing repeatable comparative trials of learning algorithms. The

ttest C shell script is used for controlling partitioning, tree growing and testing. This outputs

statistical data (accuracies, both actual and predicted, tree size, etc.) to trial files that can be

subsquently processed by a program such as Istat to check for statistical significances.

2.5 Standard IND Option Sets

With the appropriate choice ofoptious, IND will simulate a variety of other tree induction methods.

This section presents the options you should use to make IND behave similar to other tree induction

programs such as CART or ID& The presentation here is terse, only explains options not covered

earlier or that might be nonobvious. This section is valuable, mainly because it tells you what

combination of options to use.

2.5.1 CART Style

Standard CART uses the GINI index of diversity when splitting, and does cost-complexity pruning
and 10-fold cross-validation.

To achieve this with IND, we select GINI and 10-fold cross-validation ("-gC 10"), and use cost-

complexity pruning with the number of standard deviations set to 0.0 (the so-called O-SE rule) or

1.0 (the so-called 1-SE rule). The "-A0.0001" option to tgen cause it to use probability estimates

at nodes that are practica]Jy equivalent to CART's simple frequency probability (computed in IND

via the Laplacian formula using a value for alpha that is so small that it behaves effectively like

0.O but avoids potential division by 0.0). The tprune option direct tprune to prevent subsequent

Bayesian averaging in tclass by setting the leaf probabilities to 1. Finally, tclass is told to print

out a summary of performance for the induced tree.

_. CART-like eith O-SE rule and subsetting

mktrse -o "-gClO -pO -A0.0001 -SO" -p -n -c -sl hypo

_. CART-like eith 1-SE rule and no subserving
mktree -o "-gClO -pl -A0.0001" -p -n -c -sl hypo

2.5.2 C4 Style

The early version of C4 used pessimistic pruning and the information gain splitting rule. Subsetting

("-SO") or binary encoding ("-$2") could be used by tgen if so desired.

_, C4-early eith no subsstt_g

Bktree -o "-u -tO.O001" -p "-an" -c "-sl" hypo

2.5.3 Minimum Encoding Style

With minimum encoding, we seek to grow the tree that has the Uminlrnum encodillg" of tree plus

data given tree (see Section 3.4.4). The implementation in IND for these methods is not quite

standard because cut-points are not encoded according to any of the standard encoding schemes

2-10 CHAPTER 2. A TOUR OF 1ND

for trees.There is,however, a Bayesian "discountingfactor"for cut-points(givenin [7]),which

probably has a perfectlyacceptableencoding interpretation.

The "-B" optionto tprune ensuresthe singlebest treewillbe chosen. The "-AI" optionto

tgen usesa prioron probabilitiesatlea/"nodes thatexpectsextreme probabilitiesatlea/"nodes but

issymmetric in the sensthatno classa a priorbetterthan any other.To use a uniform prior(all

lea/"classprobabilitiesare equallylikely),then use "-AC" where C isthe number of classes.See

Section2.3.4forother ways of settingthis.

The option "-P-.693,-693,02"to tgen does the realwork. This givesleavesand nodes alikea

weightoflog0.5,which means we givea singlebranch a probabilityof 0.5ofbeing length1,of0.25

of being length 2,of 0.125 of being length3, etc.This alsoencodes the testsmade at each node

with the "02" flag at the end.

basic I/DL-llke

aktree -o "-utP-.693,-693,02 -£I J ' -p -B -c -slvgQ hypo

Y, NDL-IIko with nonwa.llslng the tree prior

aktree -o "-ut|P-.693,-693,02 -£1' ' -p -B -c -slvgQ hypo

Z NDL-IJ.ke wi_h uniform class priors in 2-class case

Mktree -o "-utP-.693,-693,02 -A2' ' -p -B -c -slvgQ hypo

_, NDL-lJ.ke with smxlmis£ug L1pha

mkSree -o "-utP-.693,-693,02 -£2 -¥3, I ' ' -p -B -c -slvgQ hypo

NDL-Ztke with 3-ply breadth-6 look&head

aktree -o "-u_P-. 693 ,-693,02 -£1 -B3,5 J J -p -B -c -elvgQ hypo

2.5.4 Bayes

Bayes trees is essentially MDL-like, but with a more flexible interpretation and a more thorough
theoretical basis.

Rather than trying to choose the single best tree, smooth over severs] trees using the "-b"

option to tprune. Assuming that the "-A" and "-P" options are set reasonably well, this option

almost always improves (on average) class probabi]/ty estimates and often prediction accuracies.

Also, options to tgen which essentially set prior parameters (U-A" and "-P') should be chosen as

your prior dictates, rather than due to some notion of "the shortest encoding". See Section 2.3.4.

Set alpha as described above. This is critical and effects the performance of the resultant tree

considerably. For instance, if expected errors printed by tclass are significantly higher than actual

error on the test set, then you probably have alpha set to low. If you believe there is considerable

structure in the problem, and that several of the attributes are important when predicting class,

then you probably should not be using the "-P" option because this is quite an extreme apeior

preference for shorter trees. The classic LED problem is a case in point where all LEDs are

moderately indicative of the digit so short trees should not be expected ap_or.

basic Bayes trees

aktreo -o "-u_ll" -p -b -c -slvg hypo

Many variationsexists,as forMDL-like. You can includesubsetting,lookahead,etc.

2.6. CHOOSING OPTIONS 2-11

2.5.5 Option Trees

Option treesextends Bayes treesby growing many differenttreesand storingthem in a compact

and-or graph structure.It tends to be time consuming _ud memory consuming, although the

improvement inpredictionaccuracy can be quitesignificant[5].Advice isgiven in the man entry

tgen(1)and mktreeCl) on how to controlthis.Hopefully,thiswillbe cleanedup inlaterreleasesof

IND. In general,use ofoptiontrees,where computationa]lyfeasibleand with an appropriatechoice

ofpriorparameters,shouldyieldthe best predictionaccuraciesand classprobabilityestimatesfor

allthe treemethods inIND. On verylargeproblems,optiontreesare not currentlypractical.

To use option trees,firsttry Bayes treeswith carefulchoiceof the priorparameters to get

a referencepoint. Make a note of the log.posteriorof the treegrown (seeSection2.4.2)as the

optiontreewillonly be any good ifitgets a higherlog.posterior.Now add the "-B", "-J"and

"-K" optionsas explainedabove. Experiment with differentdepth bounds and factorsto prevent

memory or CPU overruns,as explainedin the man entry tgen(1).Ifthe optiontreegrown has a

log.posteriorno betterthan forthe Bayes tree,then the searchiscausingproblems. For verylarge

data sets(such as the "nettalk"data set)itisnot currentlyrealisticto grow optiontrees.

2.6 Choosing Options

In general,good performance from a treepackage with as many options as IND requirescareful

choiceof the rightset of options. This sectionreviewssome basicfeaturesand procedures you

shouldgo through when applyingIND to a new problem.

One thing thissectiondoes not do isexplainthe generalstepsyou have to go through when

applyinga supervisedlearningsystem such as IND: stepslikegatheringthe rightdata,choosing a

setofattributes,enlistingthe help ofa domain expert,etc.For thiskind ofgeneralintroduction,

see,forinstance[33,18,22, 10].

2.6.1 Prior knowledge

In most applications, you have some vague prim knowledge that could be of use when building

a tree. IND can be primed to handle three different kinds of prior knowledge as described in

Section 2.3.4. If you have moderate confidence in your setting of these, then Bayes trees or options

trees are the best algorithms for you to try. Try Bayes trees first then experiment with option trees

to see if you can grow a tree with improved log. posterior probability.

2.6.2 Benchmark methods

Both CART and C4 are widelyregarded as being good treealgorithms.Ifyour dispositionissuch

thatyou would ratheruse an "accepted"or "standard"benchmark method, then you shouldchoose

the appropriateoption setto mimic these.

2.6.3 Appropriateness of Trees

Before choosing a treemethod at all,you should considerwhether such a method isindeed ap-

propriate.Trees do not representDNF rulesor linearclassifiers(forinstance,logisticregression

or a perceptron)very well.In general,you may wish to try severaldifferentsupervisedlearning

2-12 CHAPTER 2. A TOUR OF IND

methods on your problem and compare them. If classification seems to require weighing up many

different factors, then trees win probably be poor classifiers.

2.6.4 Parsimony or UnderstandibUity

In same cases it is important that the tree built be presentable to a human audience. This means

a far shorter tree is superior even if it has a slightly less prediction accuracy.

To achieve parsimony with CART-like options, use the 1-SE rule instead of the 0-SE rule. To

acheive parsimony with trees smoothed using "tprune -b', such as when using the MDL options,

Bayes trees or option trees, use the "-P' option to ensure a greater preference for smaller trees.

This means making either the node or leaf weights more negative, or using the 02 flag instead of

no prior flag at all.

Chapter 3

Learning Tree Classifiers

3-1

3-2 CHAPTER 3. LEARNING TREE CLASSIFIERS

3.1 Introduction

This chapter provides a detailed, somewhat mathematical treatment of, methods for learning tree
classifiers or "decision tree induction", as it is popularly called. It is not necessary to fully under-

stand the mathematics in this chapter, but an intuitive understanding of the issues and familiarity

with some of the terminology is required to use IND well. The Bayesian tree learning techniques

that make up much of IND's new features are described elsewhere [7, 5].
Section 3.2 is a brief introduction to the problem of classifier induction. This section does not

survey the area nor discuss the basic issues. Instead, it serves mainly to set the stage for the

learning problem that will be addressed in the subsequent sections.
Section 3.3 reviews the "standard" methods for learning trees. This includes methods such as

Quinlan's ID3 [29], CA [33, 31] and CART [3]. This section ends with a sample tree induced for

the noisy LED problem.

Section 3.4 is s brief guide to research in the axes of learning trees. The Bayesian tree learning

techniques that make up much of IND's new features are described elsewhere [7, 5].

3.2 Introduction to Learning Classifiers

The learning of classification rules from data is performed as an aid to knowledge acquisition [33]

We typically have an ezpert who is sufficiently knowledgeable to formulate the problem for us

and is in possession of a training act, a set of examples each belonging to one of a small discrete

set of mutually exclusive and exhaustive classes. Classes might be "positive" sad "negative", or

"diseased", "healthy" and "recovering", or similar. The task is to develop a classification rule to

predict the class of further, unclassified examples.

The problem formulation is as follows: The ezamples are grouped into different types. In a given

problem a partic_ar type of example is usual]y associated with a particular description in terms of

an expert-supplied language, consisting of 10-30 attributes. Each attribute may be binary ("true"

or "false"), multi-valued or real valued [29].

Quiulan et al. [33] present an induction problem where examples correspond to patients that

attended a laboratory for endocrine analysis. Each patient is described in terms of attributes

such as sex, age, pregnant and on-lithium. Two patients are considered to be of the same type

if they have the same attn'bute values. One binary classification of patients is whether they are

"hypothyroid" or _aot hypothyroid", and the corresponding task is to predict this given other

details of the patient. The trshfing set available for this problem is a set of some 4000 recent

medical records.

3.3 Trees

Methods for learning decision trees and class probability trees are found in both machine leandng

and applied statistics, and have been under development in some form or another for some two

decades. This chapter reviews a cross section of current methods, develops alternative Bayesian

approaches, and makes a comparison of the two families. One standard technique for building
classification rules from data is the so called recursive partitioning aJgorithm that forms the basis

of systems such as ID3 [29] and CART [3]. These algorithms build a decision tree such as the one

shown in the left side of Figure 3.1. The tree shown on the left hu the classes hllpo (hypothyroid)

3.3. TREES

@SS > 200_ @SH > 200_

Figure 3.1:A decisiontreeand a classprobabilitytreefrom the thyroidapplication

3-3

and not (nothypothyroid)at the leaves.This treeisreferredtoas a decisiontreebecause derisions

about classmembership are representedat the leafnodes. This isthe kind of treeyou see when

you run tprint without any options.Notice that the realvaluedattributesTSH and FTI have

been incorporatedintothe treeby making a binary testof the form attribute< cut-point.Also,

the treeneed not be binary;ifan n-valued attributeistestedat one of the nodes, then the tree

might have n branches coming from the node, one foreach value.

In typicalproblems involvingnoise,classprobabilitiesare usuallygiven at the leafnodes in-

stead ofclassdecisions,forming a crassprobability/tree(where each leafnode has a vectorof class

probabilities).A correspondingclassprobabilitytreeisgiven in the rightofFigure 3.1.The leaf

nodes givepredictedprobabilitiesforthe two classes.This isthe kind oftreeyou seewhen you run

tprlnt with the "-p" or U-bp" options.Noticethat thistreeisa representationfor a conditional

probabilitydistributionofclassgiveninformationhigherin the tree.This statisticalinterpretation

of a treeisused as the basisfora statisticalanalysisof treelearning[5].

3.3.1 Recursive partitioning

The basic algorithm buildsa treetop down using the standard greedysearchprinciple;always

take the perceivedbestmove and do not bother searchingto finda betterone. This resultsin an

algorithmwhose running time istypicallylinearor log-linearin the number ofexamples. That is,

given a sample of N examples,running time willbe O(N) or O(NlogN) respectively.

As each node isbeing builtthe subsetof trainingexamples that would belong at that node is

considered.The basicalgorithmcan be summarized as follows:

1. Find out how many of the trainingexamples belong in each class.We shallreferto this

informationas the node statistics.

2. Ifalltrainingexamples belong to a singleclass,or ifsome other stopping ruleapplies,the

treeisa leaflabeledwith thatclass.

3. Otherwise,

(a) selecta testusing a splittingrule,based on one attr_ute,with mutually exclusiveout-

comes;

3-4 CHAPTER 3. LEARNING TREE CLASSIFIERS

(b) divide the training set into subsets, each corresponding to one outcome, and

(c) apply the same procedure to each subset

Sometimes, the resultant tree is modified at the end, for instance by pruning back branches into

leaves [31]. This means there are three important sub-routines for the recursive partitioning algo-
rithm:

Stopping rule: should the current node be grown or turned into a leaf. IND options are described

in Section 2.3.2.

Splitting rule: which is the best test to make at the current node, IND options are described in

Section 2.3.1.

Pruning rule: how should the tree be pruned after it is grown (sometimes called post-pruning).

IND options are described in Section 2.3.3.

Once constructed, such a decision tree can be used to classify a new unclassified example described

in terms of the ssme attributes. This is done by tracing through the tree recursively to find in

which leaf the example should belong.

3.3.2 Stopping rules

Stopping rules were original]y called pre-pruning rules when people originally tried using statistical

measures to predict if further growing was unnecessary, for instance using the chi-squared statistic.

These are sometimes ineffective because a tree has to be grown out before any advantage is realised.

A Bayesian variation this statistical pre-pruning is described with the "-J" option in Section 2.3.2.

Most recent algorithms stop growing trees when certLin fail-safe conditions are satisfied.

• The node is "pure", it only contains examples of the one class. IND always does this.

• The node is greater than a certain depth. This is the "-d" option to tgen.

• The node has less than 5 (say) examples, i.e., any smaller figure gives insignificant estimates

of clsss probability. Th_ is the "-s" option to tgen.

3.3.3 Splitting rules

A splitting rule typically works as a one-ply lookshesd heuristic. For each possible test, build
leaf nodes at each of the branches and then evaluate the test according to some heuristic such as

ma.ximum information gain [29]. This approach can be summed up as follows:

1. Based on each test being evaluated, divide the trv.ining set into subsets, each corresponding

to one outcome;

2. construct a leaf node corresponding to each outcome and take the node statistics at that leaf;

3. this yields a complete subtree of depth 1 st the node being evaluated; finally

4. evaluate the quality of this subtree using some statistical heuristic such as information gain.

3.3. TREES 3-5

test outcome I

test outcome 2

test outcome T

tots.]

class cl

ni,1

nT,l

class c= ... class cc total

hi,= ... nl ,C nl ,.

n2,= • • • n2,c n2,.

aT,= •.. nT,C

n.,2 B.,T

aT,.

n.,.

Table 3.1: A C']assxOutcome Counting Table

The test that yields the highest evaluation is chosen.

The evaluation process can also be looked at in terms of a table. At each node where a test is

to be selected, the task is first to construct a table counting the number of training examples that
occur in each class for each outcome of the test, and second, to calculate a statistics] heuristic on

the table to estimate the quality of the test. A prototypica] table built is given in Table 3.1. Here

n_d corresponds to the number of examples at the node being evaluated that fall in test outcome

i and have class j, n. d is the number that have class j regardless of test outcome, and nl,. is the
number that have test outcome i regardless of class. If we also have to consider the case where the

outcome is unknown for some training examples (because an example does not have a particular
attribute value given), then an sdditioua] entry "outcome unknown" needs to be added to the table
before the total row.

For a simple test on a multi-valued attribute, "test outcome i" corresponds to attribute-value =

vl, for each distinct value vi of the attribute. For a test constructed as a binary cut-point on

a real valued attribute, the two test outcomes correspond to attribute-value < cut-point and

attribute-value >_ cut-point. Many other test types are possible, but these two are representative
and so are sufticient for our initial investigation.

The statistical tests commonly used are intended to favor splits that yield rows having signifi-

cantly different class distributions. These are mostly similar to the chi-squared statistic for testing
dependence in a contingency table. Some common tests are:

Information gain: rnJtTirnite the information gained about the class by making the test [29];
this is the default splitting rule in IND:

T T C

1(cl...Iteot)= ,=,EPr(o tco ei)Z(cla.lo tcomei) - - E= E__ log

Gini index of diversity: _ze the risk involved when making predictions once having made

the test [3]; this splitting rule is invoked in tgen with "-g":

G(cla,,ltest) : _ Pr(outcome i)G(cla_,sloutcome i) : _ hi.. nld ni,j
n..---_. _ 1- .

"= "= j=l hi,.]

3-6 CHAPTER 3. LEARNING TREE CLASSIFIERS

The correspondencebetween the two can be seenbecause they di_eronlyin the innerterms,which

can be shown to be approximately equal,

Notice that ifthe taskisto evaluate which cut-pointto use fora realvaluedattribute(should

we use the cut-point200 for TSH in Figure 3.1 or some other value),rather than construct

the table afreshfor each potentialcut point,we can repeatedlyupdate the existingtablefor a

sequence of adjacent cut points. Two adjacent cut-pointsand necessarytablemodificationsare

given in Table 3.2. In thistable,m_ denotes the number of examples from classcl that have

class cl class c=

attribute-nalue < cut-point n1,1 nl,_

attribute-nalue >_ cut.point n=,l n2,=

total n.,a n. a

attribute-value < cut-point + 6

attribute-value >_ cut-point + 6

total n.,l

ooo

**o

nl,2"_'m2 ... nl,C _rnc

_2,2 -- o12 • • • _2,C -- w_c

N.,2 •.. n.,T

class cc total

nl0C nl,-

n2,C n2,.

_-,C 1ft...

Table 3.2: Modifying Tables for Adjacent Cut-points

cut-point __ attribute-value < cut-point + 6, and m. denotes their sum. To drive this modiflc: m

process efficiently, the following algorithm is used:

1. Sort the examples according to the value of the real valued attribute.

2. Sequence through the examples in order and use the modification process above to evaluate

each potential cut-point

3.3.4 Pruning methods

Pruning is often considered to be the most important ps.-t of the tree building task. Most approaches

work using estimates of error and attempt to fred a pruned subtree of the grown tree that minimizes
this error estimate. Because the trees have been grown to "fit the data", these error estimates are

usually pretty coarse.

To explain these methods, a few new terms will have to be introduced.

Root: A root is the starting or parent node of the whole tree.

Pruned subtree: A pruned subtree of a tree is formed by turning some of the nodes in the tree

into leaves. A pruned subtree must have the same root as the onginal tree. So the root of a

tree is the smallest possible pruned subtree, and the tree itself is the largest possible pruned

subtree.

Sample error estimate: An estimate of the prediction error for a decision tree can be found by

pumping a sample, N examples, through the tree and counting the number of times E that

3.3. TREES 3-7

the tree misclassifies the examples. The estimate of error for the tree is then _. When the
sample used to form the estimate is independent of the sample used to grow the original tree,

this _ves a good estimate.

Standard error of estimate: The standard error is intended to be an estimate of the standard

deviation of the estimate. Given a proportion p derived from N examples, the standard error

is given by

Because some error estimates are derived in an unusual way, this formula is not always

appropriate. However, it is often used anyway because it is an estimate where no other might
be available.

With these in hand, a few error estimates can now be introduced.

Resubstltution error estimate

The resubstitution error estimate for a tree T is a sample error estimate. But the sample used to

estimate error is the sample that was used to grow the tree. Because the tree has been "grown

to fit the sample", this is usually an underestimate and the standard error of the estimate is not

appropriate.
When a tree has been pruned without smoothing (i.e., if tprune used either "-n" or "-B" but

not the smoothing option "-b"), and a was very low (e.g. "-AO.O001" or shnilar was used), this
estimate is reported by tclass in the entry:

Erpoc_;ed accuracy _or tree ! = ...

Naive Laplacian Error Estimate

The naive Laplacian error estimate is intended to correct problems with the resubstitution error

estimate, but only does a poor job. Suppose there are L leaves of the tree T having nl,. •., nL

examples and el,..., eL errors when the resubstitution estimate is calculated. The resubstitution

estimate is given by

E,L__Ie,
N

whereas the naive Laplacian estimate takes the Laplscian error estimate at each node _ (C
hi+C,"

is the number of clLtses) and averages these using a LaplarSan estimate of node probabilities to get
the error estimate

L

e,+(C- 1)
_=1N ni+C

For large n_, the two estimates become indistinguishable. Again, because the tree has been grown

to fit the sample, assumptions under which Laplacian error estimates are applicable are violated,

so these estimates again tend to underestimate error, but less so.
When a tree has been pruned without smoothing (i.e., ff tprune used either "-n" or "-B" but

not the smoothing option "-b"), and a was 1 (e.g. "-At"), this estimate is reported by tclass in
the entry:

Ezpoc_ed accuracy _or troo 1 = ...

3-8 CHAPTER 3. LEARNING TREE CLASSIFIERS

Cross-Validation Error Estimate

Cross-Validation (CV) error estimatea are used to estimate the error for a tree growing method

rather than a particular tree. The idea is that, rather than making use of a sample to build a tree

and a further sample to test the tree, you can manufacture severs] pseudo-independent samples

from the origins] sample and use these to get a better idea of the error of the tree growing method.

The general technique takes a tree growing method M and estimates error of the method as
follows.

1. Split the origins] sample S into _ like-size disjoint samples $I,..., S_.

2. For/= 1,...,_,

(a) Build a tree using method M on the training set S - St.

(b) Determine the sample error estimate R_ using the test set Si.

3. Form the CV-error estinmte as

To calculate the standard error of this estimate, the usual standard error formula is used.

This error estimation technique is guaranteed to give good estimates as the sample sizes become

large. Breiman et al. argue from their empirical studies that _ should be set to about I0. Cross

validation can also be used as s means of evaluating a tree building method on a test set using

many different samples with independent test sets.

This estimate can be obtained by using ttest with the "-C" option.

Error Estimate Pruning

A simple pruning approach by Bratko and Niblett prunes a node to a leaf if the naive Laplacian

error estimate for the leaf st the node is less than the naive Laplacian error estimate for the subtree

at the node.

Cost Complexity Pruning

Several cost compiezitT/pruning methods make use of the notion of cost complexity. This is a

measure of the resubstitution error of a tree further penalized by the size of the tree. Its main use

is for forming a sequence of increasing pruned subtrees of a tree T; root of T has a pruned subtree

2"I, which has a pruned subtree T2, ..., which has a pruned subtree T. Without introducing such

s notion, there is no real way of progressively pruning a tree in an ordered manner.

Cost complexity st level a for tree T, Ra(T): This is the formula

R..(T) = ,ub,titution-erl'or-e,timate + alleave,(T)l ,

where]leaves(T)[denotes the number of leaves in the tree T. The substitution error estimate

is usually computed on a test set. Once again, notice that this is an additive function of the
nodes in the tree.

3.3. TREES 3-9

R..-_zing subtreeofT: This isa pruned subtreeT' ofT such thatallotherpruned subtrees

eitherhave a greatercostcomplexitystlevela orthey have the same costcomplexityand they

have T' ms a pruned subtree.The Ra-minimizing subtreesas a decreasesform an increasing

sequence ofpruned subtrees.Finding the Ra-minimizing subtreeuses a standard algorithm

forfindinga pruned subtree_sing an additivefunction.This isobtained with the "-c"

option to tprune and using a as the optionargument.

Minimum errorssubtreeof T: This isthe R0-_zing subtreeof T, or the smallestpruned

subtree of T having the leastsubstitutionerror.This isobtained with the "-cO" optionor

the U-M" option to tprune.

With thesedefinitionsinhand, we arenow inapositiontodescribetwo more pruning algorithms.

The firsta testsetto estimateerrorand determine st which levelcostcomplexity pruning should
be done.

The costcomplezitypruning algorithmu_ithtestset[3,p79,p309]usescostcomplexityto givean

easilycomputed nestedsequence ofpruned subtreesand a testsetto give"honest" errorestimates

for the pruned subtrees.

1. Splitthe sample intotwo disjointsets,a trainingsetand a testset.

2. Grow a treeusing the trainingset.

3. Find the mi_im_sm _Tl'orsftlbt'r_ for the testsetand compute itssubstitutionerrorestimate

R0 from the testsetand the standard errorof the estimateSEo.

4. The pruned subtreeisnow the Ra-mlnlrnlzing subtreest the maximum levelof a so thatthe

pruned subtreehas a substitutionerrorestimatefrom the testsetoflessthan Ro + SEo.

Stopping afterStep 3 computes the so-called0-SE tree.Stopping afterStep 4 computes the 1-SE

tree.Both can be obtained using the "-c"optionto tgen.

The costcomplezitypruning algorithmwith crossvalidation[3,p79,p309]uses crossvalidation

to form testsetsinstead.This isidenticalexcept thatcrossvalidationisused to estimateerror.

1. Choose v disjointsubsetsof the sample for crossvalidation.

2. Find the levelof a minimising the CV-error estimateforthe R_.-minimizingsubtree(i.e.,the

treebuildingmethod isgrow a treeand findthe Ra minimizing subtree).Let R0 be the error

estimateand letSEo be itsstandard errorfor thatlevelof a.

3. Find the mRYimnm levelof a so the CV-error estimateforthe Ro-minimizing subtreeisless

than Ro + SEo.

4. The pruned subtreeisnow the P_-_zing subtreeconstructedon the fullsample.

The so-called0-SE ruleisobtained by ignoringStep 3. Eithermethod of pruning isobtained using

the "-C" option to tgen.

3.3.5 Handling Unknown Attribute Values

A problem that occurs commonly in practiceiswhere examples are incompletelyspecifiedin the

sense that theirclassisgiven,but some attributevaluesremain undetermined or unknown. This

isoftenreferredto as the problem of unknown salues.

3-10 CHAPTER 3. LEARNING TREE CLASSIFIERS

There are two situations where this problem arises. The first is where we have unknown values

in the trmg sample used to grow the tree. The problem arises when we are to choose a new

test at a tree node. How do we treat those examples for which the test outcome is unknown: how

do we evaluate the test and would we subsequently partition the examples? The second problem

arises when we come to classify a new example. As we pass the example down through the tree to

a leaf, what do we do if one of the test outcomes is unknown?

A precise strategy for using a class probability tree T to classify an example z having some

unknown attribute values is to process the example down through several branches of the tree,

weighted by the probability that the example could occur at that branch. This follows from the

probability identity
L

Pr(clz,T) = _., Pr(clI, T)Pr(lJz,T) ,
/---1

where Pr(llz , T) denotes the probability that the example z belongs in the I-th leaf of T, and

Pr(cll, T) denotes the probability that the class is c given that the example belongs in the/-th leaf

of T. If all attribute values of z are known, Pr(llz , T) is 1 for the leaf i to which the example z

belongs, and 0 for all others. If some attribute values are not known, the unit probability may be

distributed across several leaves to which the example could belong.

Quiulan has made an extensive empirical study of various suggested solutions to these problems

of unknown values [32]. Some of the methods compared included ignoring examples with unknown

values, filling in the missing values somehow, splitting an example into a set of fractional examples

with unknown values filled in, or treating unknowns as a separate outcome for each test. Several

of these strategies can be implemented with the "-U" option in tgen and tclass. Not surprisingly,

the best approaches were those that worked in accord with the strategy given previously. One

places an example with unknown outcome proportionally to each test outcome or branch during

test evaluation, partitioning and subsequent classification. For example, when the counting table

is built, an example with class q whose test outcome is unknown has its unit weight distributed

across several of the rows in the column headed cl. This means the counts in the table will not

necessarily be integer. During partitioning, an example with test outcome unknown may be passed

down several branches but such that each branch only gets part of the unit weight of the example.

Finally, the same is done when a new example is to be classified.

3.3.6 An Example of Growing a Tree

Consider an LED display as drawn in Figure 3.2. The LED represents digits 0-9. The display is

faulty, each element has 10% no_e applied independently of the other elements. This is the LED

example popularized by Breiman, Friedman, Olshen and Stone [3].

The classification task is to predict the digit intended to be represented by a particular con-

figuration of the display. The learning task is to learn a classifier from examples. The theoretical

maximum prediction accuracy obtainable for the classification task is about 72.7%.

Table 3.3 gives a part of an LED data set used to grow 2 trees. The full sample used to grow

trees given below has 100 examples. The first row reads "elements L2, L3, L4 and L6 are on and

the remainder are off, and the digit 4 was being represented".

The tree in Figure 3.3 is formed by growing a tree to completion and then pruning using
Quinlan's pessimistic pruning algorithm.

3.3. TREES 3-11

L2

L5

L1

L4

L7

L3

L6

Figure 3.2: The LED display

di t
4

8

6

6

7

2

1

9

2

5

2

9

3

7

LI L2 L3 L4 L5 L6 L7

n y y y n y n

Y Y y y y y n

n y n y y y y

y y n y y y y

y n y y n y n

y n y y y n y

n n y n n y n

y n y y y y y

y n n y y y y

y y n y n y y

y n .y y y n y

y y y y n y y

y n y y n y y

y y y n n y n

Table 3.3: Part of a learning sample for the LED task

mktree -p -en dig
tprl.u_ -c dig.a_tr dig.treec

The tree has a true prediction accuracy of 71.0% and has 18 nodes. Each line represents a node in

the tree. Non-leaf nodes give only a test outcome, while leaf nodes give a test outcome together with

a vector of class counts. For instance, the first leaf in Figure 3.3 has "0+5+0+0+0+0+0+2+0+0"

which indicates that the digit '1' occurred five times at the leaf, the digit '7' occurred twice, and
all other digits no times.

The tree in Figure 3.4 is the right hand branch of a tree grown to completion. The full tree has
true prediction accuracy of 68.2% and 69 nodes.

3-12 CHAPTER 3. LEARNING TREE CLASSIFIERS

L5 m n:

L1 = n:

I L4 = n: 0+5+0+0+0+0+0+2+0+0

l L4 = y: 0+2+0+0+9+0+0+0+0+0

L1 = y:
L3 = n: 0+0+1+2+0+11+0+1+0+2

L3 • y:

I
I
l

I

L5 = y:
L2 = n:

L2 = y:
t
J
[
I

L4 = n: 0+1+0+2+0+0+0+5+0+0

L4 = y:
[L2 = n: 0+0+0+10+0+0+0+1+0+1

J L2 = y: 0+0+0+0+0+0+0+0+0+8

1+0+12+0+0+0+0+0+0+1

L4 - n: 7+0+0+0+1+0+0+0+0+1

L4 = y:
[L3 = n: 0+0+0+0+0+0+6+0+0+1

[L3 = y: 0+0+0+0+0+0+0+0+6+1

Figure 3.3: The pruned tree

3.4 A Guide to the Literature

The standard text from the statisticJ community is the CART book [3]. Good tutorial papers have

been written by Hart [18], several by Michie [22, 21], Quin]an [29] and Quinlan et al. [33]. These

all include descriptions of applications.

Many theses on trees exit, and some of the more recent ones are by Buntine [7], Cat]ett [13],

Chou [15, 16], and Crawi'ord [17].

Further interesting applicati_ are; natural language speech recognition, where several complex

methods were introduced to improve performance [1], and assessing credit cards [12, 23].

Experimental comparisons of an varieties exist. Some have compared general methods [43, 14],

some compared components tree tasks |uch as pruning [31, 24, 26], splitting rules [25, 9], windowing

[44], handling large data sets [13], missing or unknown attribute values [32], and comparisons

between different theories [7, 5]. Always be wary about experimental evaluations because so many

pitfans exist.

Even a patent exists [36] on a tree growing method.

Wl_le it is difficult to survey in a short space the many issues that are of concern to the diverse

research groups involved in tree]earning, this section briefly reviews three broad issues that seem

to be most important in extending tree methods. There is also, of course, the re-occurring issues

of stopping, splitting and pruning rules, and treating unknown values.

3.4. A GUIDE TO THE LITERATURE 3-13

3.4.1 Extended Representations

Trees are very verbose in representing certain disjunctive concepts. This was highlighted by Quinlazt

[31] who attempted to build a decision tree equivalent to the logical expression

A1AA2AA3 V A4^A5^A6 V A7^A8^A9. (3.1)

The smallest possible tree for this expression has 39 internal nodes and 40 leaves, considerably larger

than the representation above, and contains considerable replication in that many different branches

axe identicalin form. Most significantabout this,a treegrowing method willneed to paxtition

the data into40 very finepartitionsto grow the tree,whereas a disjunctiverulebuildingmethod

would (at best)only need to partitionthe data into3 partitions,one foreach conjunction.Since

finerpartitionsgivelessaccurateprobabilityestimates,the treegrowing methods are considerably

disadvantagedon such problems.

There aremany variationson thisrepresentationtheme and severalresearchershave considered

solutions.Quinlan has suggestedpost-processingtreesintorulesets[30].Matheus and Rendell,

and Pagallohave proposed growing treeswith conjunctivetestsatnodes insteadof singleattribute

tests[20,27].Chou has proposed an efficientalgorithmforgrowing treRisesinsteadoftrees[16,15]

where trellisesare dixectedacyclicgraphs with classprobabilityvectorsat the leavesand tests

at internalnodes (thatis,liketreesbut internalnodes can have multipleparents). A related

approach is the _pylons" of Bald, Brown, de Souza and Mercer [1].Smyth and Goodman [38]

have developed an informationtheoreticapproach to growing "non-directed"rules,that is,rules

with many differentattr_utesin the consequence.Weiss and Indurkhya [42]have developeda rule

learningprogram thatisa CART analogforrules.

An alternativeto classprobabilitytreesforrepresentinguncertainclassificationrulesistheuse

of Bayes or causalnets [19,28].These essentiallyallow a modular decomposition ofthe attribute

spaceusingprinciplesofindependence,sometimes guidedby intuitionabout causality.The simplest

example isthe simple(or"idiot")Bayes classifierwhich assumes allattributesaxeindependentgiven

class.These axe highly competitivewith treeson some problems [4,14]and thereislittledoubt

thatwith more thorough net learningapproaches,thiscompetitiveperformance can be considerably

improved. Tree and rulelearningmethods could be incorporatedin these approaches as methods

forlearningjointdistributionsat network nodes.

3.4.2 Extended Search and Alternate Growing Methods

The common framework ofalltreegrowing methods discussedso farisrecursivepartitioning.This

uses the simple one-ply lookahead strategyof growing a node to depth one for allpossibletest

combinations and subsequentlygrowing the treeaccordingto the besttest.

The questionarises,can we do more extensivesearches,for instance,a multi-ply]ookahead?

There isa problem with thisin thatlookahead when thenumber ofexamples aresmall,willrapidly

cause performance to deterioratebecause the best splitmay wellbe justa chance partitionofthe

small sample intodistinctclasses.Weiss et al.[43]have demonstrated,in the contextof learning

conjunctiverulesin noisy domains, thatmore extensivesearchcan yieldgood results.To avoidthe

problem ofsmall samples, they limitthe sizeof potentialrules.

3-14 CHAPTER 3. LEARMNG TREE CLASSIFIERS

3.4.3 Incremental Growing Methods

Some researchers have considered the question of how a learned tree can be efficiently updated,

given new data. In the general framework, data arrives in a sequence and a corresponding sequence

of trees is incrementally built. Early work here has been done in a noise-free context by Utgoff

[39], and more sophisticated statistical approaches are suggested by Crawford [17]. See comments

by Buntine in [5, 6].

3.4.4 Theoretical Developments

The theory of learningtreeshas been developed in severalways recently.Early statisticalwork

was in an applied context,using techniquessuch as cost-complexitywith cross-validationto do

pruning [3]. The theory of minimmn encoding, or MDL, has been applied by Quinlan and Rivest

[34]. Proponents of the theory of minlmnm encoding have since developed this further. Kissanen

includes a chapter in his book [35] and Wallace and Patrick have refined the theory and implemented

a computer program [41]. Bayesian approaches similar to and extending these are developed in [7, 5].

3.4.5 Support for the Knowledge Engineer

An important issue raised in the introduction of this thesis is that learning of classification rules

is typically performed as a service for the knowledge engineer. So a learning algorithm should not

just propose a class probability tree suited for the classification task, it should provide any other

information--maybe alternative class probab_ty tree_---that might assist the knowledge engineer
with his duties.

Several groups have addressed this issue by making tree learning more interactive. A survey is

given by Buntine and Stifling [10], and Shapiro's thesis also covers the topic [37].

Some forms of information that may be of use are:

Accuracy prediction: What kinds of accuracy (or more generally, performance) should be ex-

pected from the tree suggested?

Options: Axe there any other trees that could just as well be used, and what is a measure of

theirsuitability?

Ratings of tree components: At choicepointsinthe treebuildingprocess,severa_optionsmay

be available,such as the choiceofwhether to prune a node and the choiceoftesttomake at

a new node. How good are thesedifferentchoices?

Confidence: What isour confidencein any of the above predictions?

Various forms ofthese are developed and have been implemented in the IND package in the inter-

activeinterfaceand are based on the Bayesian theory.

3.4. A GU/DE TO THE LITERATURE 3-15

L5 • n:

L1 -n:

L4 = n:

L6 m 1'11:0+0+0+0+0+0+0+1+0+0

L6 = y:

I

I

I

I

L4 = y:

I

I

L5 • y:

I

I

LI = y:

L2 m _:

[L3 = n: 0+I+0+0+0+0+0+0+0+0

[L3 • y: 0+3+0+0+0+0+0+I+0+0

L2 • y: 0+I+0+0+0+0+0+0+0+0

L2 • D:

[L6 = n: 0+I+0+0+0+0+0+0+0+0

[L6 = y: 0+I+0+0+I+0+0+0+0+0

L2 = y: 0+0+0+0+8+0+0+0+0+0

I

I

I

L3 = y:

L3 = n:

L6 = n:

[L2 = n:

l I L7 • n: 0+0+1+0+0+0+0+0+0+0

[[L7 • y: 0+0+0+0+0+0+0+0+0+1

[L2 = y: 0+0+0+0+0+0+0+I+0+0

L6 • y:

l L7 = n: 0+0+0+0+0+0+0+0+0+I

L7 = y:

I L2 • n: 0+0+0+2+0+2+0+0+0+0

I L2 = y: 0+0+0+0+0+9+0+0+0+0

L4 = n:

L7 = n:

I L2 = n: 0+1+0+0+0+0+0+2+0+0

I L2 = y: 0+0+0+0+0+0+0+2+0+0

L7 = y:

I L2 • n: 0+0+0+1+0+0+0+0+0+0

[L2 = y: 0+0+0+1+0+0+0+1+0+0

L4 = y:

L2 • n:

[L7 = n: 0+0+0+2+0+0+0+I+0+0

I L7 = y:

l [L6 = n: 0+0+0+2+0+0+0+0+0+0

I [L6 = y: 0+0+0+6+0+0+0+0+0+1

L2 = y: 0+0+0+0+0+0+0+0+0+8

Figure 3.4: Part of the unpruned tree

3-16 CHAPTER 3. LEARNING TREE CLASSIFIERS

Chapter 4

IND Man Pages

4-1

4-2 CHAPTER 4. IND MAN PAGES

4.1 Introduction

This chapter presents the man pages for IND. Man pages are included for every IND routine that

is callable. Many IND routines, however, never need to be explicitly called by the user. Instead,

these low-level routines are called by IND's higher-level routines. Because of this, it is usually not

necessary to become familiar with all of the routines. We have included all of the man pages here

for completeness, and also to help those who delve deeper into INT) in an attempt to modify it.

The main man pages that the typical user OflND shon]d be familiar with are: attributes (this

is just a man page that descn'bes the fornmt of the attribute file-it is not the man page for an

IND routine), mkbld, mkclean, mktree, tclass, tgen (because many of the options specified to

mktree are explained in the tgen man page), tprint, and tprune (because many of the pruning

options specified to mktree are explained in the tprune man page).

If you are interested in experiment control and design then you shon]d like at ttest and the

now out-of-date script truns.

I/'you are ako interested in simple Bayes classifiers you should look at mkcl, bclass, and bgen,
too.

4.2 The Man Pages

The man pages included in this chapter were printed with troff using commands such as "man -t

mktree mkbld", etc., and just stuffed into the appropriate part of the manual This was a lot easier

than converting the pages to Lt_X, but unfortunately means that the man pages lack computer
generated page numbers and might not be perfectly indexed.

COMMAND (1) USER COMMANDS COMMAND (1)

NAME

auributes - describes the attribute.[de format for the IND family of programs

SYNOPSIS

none - not a program Oust a man page)

DESCRIlVrlON
Overview

The mrribtae file (usually a file ending in ".aur") contains a series of attribute descriptions that guide

IND's processing Of examples. The examples themselves are not stored in the ",mr" file. The corpus
of all examples available for the domain is usually stored in a file ending with ".dta". IND reads the

examples in the ".dta" file and creates Iraining and test sets of examples. Training data is usually
placed in a ".bid" file ('bid" stmds for "build') and test data is usually placed in a ".tst" file.

To make this concrete, consider the hypothyroid database in directory /IND/Data/thyroid. The file
"hypoJmr" describes each attribute (including the class aUribute) for the thyroid database. Each line in

the "hypo.alzr" describes one attribute. Auribute descriptions include the attribute name, auribute type,

and allowable atlribute values. The file "hypo.dta.Z" is a compressed version of all of the thyroid

examples. Each line in the uncompressed version of this file is a single example containing a
classification and a sequence of aUribute values (in the order they are described in "hypo.am-"). IND

routines sample the ".dla" file to create a Iralning and test set (in "hypo.bld" and "hypo.tst', respec-
tively). Other IND routinesthen buildclassifiersusingthe auributedescriptionsin "hypo,attr"and the

examples in "hypo.bld"and placetheseclas,sifiersineither"hypo.lzee"or "hypo.cl',depending on the
typeof classifier.

Atlributm and Examples ka Mo_e lk, tall

The allribute file contains a series of attribute descriptions separated by white space (space, tab, new-

line). Each atlribtac description contains an atlribute name, followed by a colon, followed by a descrilY-
tim of its type, and terminated with a full-stop (i.e., ".<CR>'). Any identifiers such as attribute names

or auribute value names must be composed of letters, digits or the symbols " -/.'. The symbols ".A"

ca, mot appear in the first or last positions. For discrete alxributes, the type description is a comma-
separated list of auribute value names. For continuous auributes, the type description is a continuous
type, con:, step, norm, followed by a range spec_ying the minimum and maximum value the auribute

can take, represented as n_ .. max. The first auribute in the attribute file must describe the decision
attribute.

The auribute file may have an optional contexts specifi_ following atlribute descriptions. Contexts
used to consu-am the shape of the nee _ can be generated by tgen. Contexts can abe be used to

prevent an auribme from ever appemng in a eee (using the form "never').

A context specification coesists of the word "contexts" followed by a colon then a sequence of context

descriptions for atwibutes. A context description is conslructed from the following grammar:.

alln'bute-name "never" "." [

a.n_te-name "onlyif"test "."
literal I

literal "and" ... literal I

"or" ... literal "and" ... literal

"C te_')'l atom I "not'atom I

"not" "("_ ")"
amibute-name I

anribute-name "=" am'ibute-value I

attribute-name"<" amibute-value I
attribute-name ">" attribute-value

Sun Release 4.1 Last change: local 1

COMMAND (I) USER COMMANDS COMMAND (I)

These indicate that an auribute should be tested "never" or only if a certain condition holds. The test
consisbng of an attribute name alone holds if the allribute has itself been tested further up in the deci-
sion tree. Only the tgen program rigorously conforms to these specifications.

The attribute file may have an optional utilities specification. This specifies the utility "u(c,d)" of
predic_ng class "c" when the true class is "d". This is specified by a matrix of comma delimited real
values with each block delimited by semi-colons. An example specification for the three class case is:

utilities : 100, 10, 10; 20, 50, 20;, 10, 10, 100.

This means u(l,l) = 100, u(1,2)=10, u(2,1)=20, u(2,2)-50, eu:. Utilities are taken into account by the
?class ixognuns when calculating the best decision. The default utility is "minimum errors", or a
matrix with l's on the diagonal mul O's elsewhere.

The atu-ibute file is parsed with a yacc-generated parser, so does limited error reporting.

An example attribute file is shown below.

class: pass, faiL
Experience: formal, n_xating, self_taught, none.
Language: assembly, basic, logo, none, other, pascal.
Sex: M,F.
HSC: cent 200.500.
Year:. corn 60 .. 90.
MathsU: coat 0.4.

met 0 .. 200.
Faculty: ARTS, ARTS/LAW, ECON, ECON/LAW, EDUC, ENG.

Sex neveL

Language onlyif not experience=none.
MarkM onlyif MatlmU>0orFaculty=ARTS.

The comex:J here mean tim the _ Sex slmuld never be tested, the auribute Langange should

only be _ ff Expm'im_ has beea tested previously to be scmmhing _ than none, and MmkM
should only be tested if MaI_U has been tested to be >0 H! ff Faculty has been tested to be ARTS.

The example file contains input data (one record per line) matching the aturibme description given in
the amibule file. Fields are _ by tabs or spies. Below is an example of input dam ma_:hing
the sml.aur am'ibute dmcriptimm. Note that every entry in the rite must contain a single example. In
particular, this means that them cannot be my blank lines atthe end of the file

fail fomml assembly M 289 82 3 100 ECON
pass formal assembly F 357 81 2 81 ARTS

Other sample attribute files and examples databases can be found in "/IND/Dma'.

_S
Currently, no discrete _ og the class cat have more the 32 values. If it does then the problem
prob_ly needs better engineering/surucmring before applying IND.

The maximum number of allributes is 250. Again, ff the problem has more than this, and they're all
considew_ "possibly useful", then the problem probably needs a different non.tree system.

SEE ALSO
mkb/d(l), mktree(1), mkci(l), b&en(l), t&en(l).

Sun Release 4.1 Last change: local 2

COMMAND (I) USER COMMANDS COMMAND (I)

NAME

bclass - classify a test set using a Bayes classifier

SYNOPSIS

bclass [options] attribute.file cl.file(s) [test.fie]

DESCRIPTION

bclass takes a test set and classifies it according to the given Bayes classifier. The test set has the same

format as the input data for been so decision attributes must be given (see auribules(1)).

If the attribute file contains a utittties specification, then average utility is also printed with any statis-
tics, and the best decision is calculated to maximize expected utility. Otherwise the class with max-

imum probability is chosen (i.e., minimum rotors utility).

OPTIONS

--b

...¢

--d

-o

.t)

Make summary of performance briefer. Useful if the output is latea" piped to a statistics pro-

gram.

Print the given class of each example.

Print the decision made by the classifier on each example.

Choose the best decision simply by picking the class with highest probability (i.e., ignore utili-
ties).

Print out the l)mhability estimates for each class with each example.

Print a summary of perfornumce for the classifier:, accuracy, mean square re'for, expected accu-

racy (the classifier's wediction of what accuracy it should have got) and an optional average

utility.

Printout themisclassificationmalrixof predictedclassesby actualclasses.

For the two classcase,decidesecond classifprobabilityof second classisgreaterthanp.

Default is 0.5. Ifutilities are specified in the description file, p is calculatedautomatically.

BUGS

Who knows? Hasn't been tested in quite a while.

SEE ALSO

am,'ibutes(l), bEen(l), mkc/(l).

Sun Release 4.1 Last change: local !

COMMAND(1) USER COMMANDS COMMAND (1)

NAME

bgen - generate a Bayes classifier

SYNOPSIS

bgen [optleas] attribute file ezamptes fde cl file

bgen [optkms] stem

DESCRIPTION

b|en takes a file of examptes and builds a Bayes Cia._fier. Real valued attributes are either given a
nomml model or a cut-point model, _g on whelher the continuous type in the attribute file is

norm or step or coat (see attributes(I)). The second form uses the stem instead of explicitly specify-

ing the atlribete, examples and output files. It assumes stem.anr and ste_bid e_. Creates stem.cl.

OPTIONS

-A a/pha
Set alpha to value a/p_ (default is 0.5).

-a Fon:e all real valued attributes to have normal models.

SEE ALSO

attr/butes (l), bc/ass(1), mk_cl(1).

Sun Release 4.1 Last change: local 1

COMMAND(1) USER COMMANDS COMMAND(!)

NAME

lstat - compute simple statistics on lines of data

SYNOPSIS

istat [options] files

DESCRIPTION

istat computes simple statistics on columns in files, such as column means, standard deviations, t-tests

or F, tests and paired t-tests on a pair of columns. The first column is counted from I. Istat is intended

to be used on the ".trial" files output by ttest. The -T opt/on makes certain changes that make output

compatible with TeX tabular mode.

Either st_fis6csare computed for a singlefile,or with the -F opdon, statisticsare computed

differentiatingthe firstfilefrom the remainder.When comparing columns, itisdone on a lineby line

basis, so the pa_ed t-test is used.

To check outputfxom ttestfor"hypo"filesof u_iningsetsizeI000,do

Istat-v 1,2,3,5hypo.trial.1000*

To do a pairedt-lestcomparing the performanceof "mdl" and "can" trials(seettest(1))do

Istat-F -s1,2 hypo.triaLl000mdlhypo.trial.1000can

OPTIONS

-2 Use a 2-tail t-teaL Default is l-l_ileA.

-a col-list
Printthemean of each column in col-list.

-A col,col-list
Print the mean of the difference betwee_ the col-_ cohmm and each column in col-list.

-C col,col-list

Print the mean, standard devotion, t-score and F-_ore of the cfifference between the col-th
column and each column in col-list.

-.,4 Be v_ during operation.

.-e Suppressusuale_ror repomng.

-f9rec Floats me to be printed with prec decimalplacesafterthepoint, default is4.

--IF Statistics are now computed as the difference between con'eslxmding columns in the first file

and subsequent files, with columns am pait_ as before for the paired t-teSL In this mode, -s
and -S options are idcnu_l, etc.

text In the output, precede the last field specified with a -s,-v,-V option, etc., with the text text.

-p col-fist
The comma-sepmmed fist of integers, col.list, specifies which columns are to be printed as per-
ce_B.

•..q/ten_

Only dLsplay this many items on a line of output.

•4 col.lLst

Print the mean and t-score (difference from O) of each column in col-l_t.

..S colxoi-list
Printthe mean and thet-score of the differet_ between the col-thcolumn and each column in

col-list.

-4 te_ Seperate fields in the output with this text.For use with -T option.

-T text Make output compatible with TeX tabular mode. Damn useful for subsequently generating

tables,textis printedbeforeanythingelse. If a second -T optionis used, then itstextis

Sun Rekme 4.1 Last change: local 1

COMMAND (1) USER COMMANDS COMMAND (1)

printedrightattheend.

-v col-list
Print the mean and standard deviation of each column in col-list.

-V col,col=list
Print the mean, and st_dard deviauon of the difference between the coi.th column and each

column in col-list.

SEE ALSO

ttest (l).

Sun Release 4.1 Last change: local 2

COMMAND (1) USER COMMANDS COMMAND (I)

NAME

mkbld - control partitioning of data

SYNOPSIS

mkbld [--cDr] [-p i m] [-P i m] stem [me] [seed]

DESCRIPTION

mkbld is a C shell script that runs sample and all softs of clean up utilities in the process of building a

trah_g data set. stem should be a simple file name and not a path name. The script locates or builds

a data file and then partitions that data file into a training set and a test set for use by the learning algo-
rithms.

mkbld assumes files are stored in the format "stem.e.xt', where stem is the first argument to mkbld and
the extension e.u is one of:.

".dta"
".bid"

no_U

".all"

nosh tl .

data set of all available examples for domain
the training set or sample
the test set

complete data (enumeration of all possible data)

shell script, ouqmts data to standard out

The ".all" set is intended for data where an exhaustive enumeration of data points is available (e.g., for
logical data sets such as XOR). It is incompatible with ".dta'. The test set (".tst"), is normally the data

set minus the training set, i.e., the remaining data, unless the data was obtained from a ".all" file, in
which case the test set will be the entire %ill" file.

If the data file ".dla" doesn't exist, mkbld first tries to _t it by running uncompress, and ff that
fails, by running the shell script "szem.sh" to genmrate iL

The second argument to mkbid tells how large the uaining set should be. It is not requix_ when

option -p or -P is used.

The optional third argument specifies a seed for the random number genexator used in partitioning the

da_ set. This allows trials to be rcwoduccd Lste_ on.

OPTIONS

.-¢

--D

-p mi

-P m i

-4"

If a ".bid" file already exists, then report emx and abort.

Echo the shell comnuuxls issued by mkbld. This is useful for debugging or learning how to

use the system.

Split the data file into m paniums; use the i-th for

the test set, and the remaining m-I pm_itions as the training set. Used to simulate cross vali-
dati_ on a data Set via _ell-level commands. Igncx_ the s/ze parameter if specified.

Split the training file (the ".bid" file) into m panitims; use the i-th for the lest set, and the

remaining m-I partitions as the training set. The new lraining set is placed in "stem.bid.i"
where the suffix "ff indicates the pmition not included m the file; the i-th partition is placed in

"stem.tst'. Used to simulate cross validation on a sample of a data set via shell-level com-

mands, lgn_ the size parameter if specified.

Do sampling with replacement (default is without replacemen0.

SEE ALSO

aaT/butes(1), mktree(l), mkci(1), samp/e(l).

Sun Release 4.1 Last change: local 1

COMMAND (l) USER COMMANDS COMMAND (1)

NAME

mkcl - make and optionally lest a Bayes classifier

SYNOPSIS

mkcl I-D] [-c clopts] [-o genopts] slem

DESC_ON

mkel runs bgen and optionally beimm on the data set with file stem stem. This assumes an attribute file

"stem.aur" exists, an examples file "stem.bid" exists, and, if belam is to be run, that a test file "stem.tst"
exists. The classifier is output to file "s_m.cl'.

OPTIONS

-c ciopts
Pass c/opts argument as options m bclamt. Note that c/o_s should be placed in quotes and must

include it's own "-" (e.g., "-st').

-D Echo the shell commaads issued by mkcl. This option is useful for debugging or learning how
to ese the system.

-o leno/xs
Pass _nopts mllura_ m ol_ons to bgea. Note that 8enopts should be placed in quotes and
must include it's own "-" (e.g., "-A 0.25 -n').

SEE ALSO

anr/blaes(1),ruth/d(1),b&en(1),bc./ass(1).

Sun Release4.1 Last change:local 1

COMMAND(1) USER COMMANDS COMMAND (1)

NAME

mkclean - clean up mess from mkbld, mktree, etc.

SYNOPSIS

mkclean [--¢rt] [stem]

DESCP.Ilq_ON

mkdeaa is a C shell script that cleans up any mess due to abnormal termination of mkbld, mktree or

ttest.This means delelingany files"stem.bld","stem.l.st',"stem.tree*',and compressingthe data file.

stem should be a simple file name and not a path nante.

OPTIONS

--C

..f

--4

Don't bother comix_.ssing data file.

Tar and compress any "stem.trial.*" files.

Don't delete Iree or classifier files.

SEE ALSO

mkb/d(1),m$tn'ee(1),nest(1).

Sun Release 4 I y ._ft _'h_nt_." Irv'_l

COMMAND (1) USER COMMANDS COMMAND (1)

NAME

mktree - make a decision tree and optionally prune and test it

SYNOPSIS

mktree [-.a] [--c ciopts] [-D] [.-n tnanw] [--o genopts] [-p propts] [-R r n] stem

DESCRIPTION

mktree is a C shell script that runs teen and optioa_y tprune and td_s on the "data set with file stem

em. This assumes an auribute file "stem.a" exists and a mdn/ng data rite "$tem.bld" exists, presum-
ably produced by mkbkL

Pruned trees me output to file "acre.tree" if only a single u_c is produced, er for multiple trees, to
"stem.tree.l stem.tree.n'. The _ unpruned m_es will be in "stemAreec", etc.

A typic.a] command sequence W run u_ads on the "hypo" data set might be:

select a sample of 500 data points

mkbld hypo 500
run q_en with "-tuUl -d5", tpmnc with "-b',

and tclass with "-slvg"

mkm_ -o "-mUl-d5" -p "-b" -c "-slvg" hypo

c_mmon forms are:

CART-I/ke: GINI splits and cost-complexity framing

using 10-fold cross-valkL and 0-SE rule

mkm_ -o "-gCl0-p0-A0.1" -p "-n" -c "-sly" stem

C4-1/ke: info. _ Writs, pessimistic pruning
mklree -o "-uUl-A0.1" -p "-en" -c "-sly" stem

MDL-like: Bayes spi/ts and codingof wee

mlaree -o"-uUl -AI -NP-0.69315,-0.69315,02"\

-p "-B" -c "-slvgQ" stem

averaging many trees u._ng opliom facility;

u,ke c_m_with dep_, _ boun_ and ,,_m (-A)
mktree -o "-mUl-B2,3-J3-K3-¢15-s3" -p "-b" -c "-slvgQ" stem

Note that arguments tO be passed to _en, Iprune, and tclass shouldbe enclosedinquotes.

OPTIONS

OulpW characm" format fe¢ trees as well us/rig tchar.

-c c/opts

RWtl td_s OI! all _ with O_O_ C/O_, with OUtpUt IO sl,MldardOtilpUL Thc f_qlllllCm
c/opu should be enclosed in quotas. See to/ms(l) for tclass opuons.

-D Echo the shellcommands issuedby mktree. This option is useful for del_gging or learning

how to use the symem.

-4n/ce Automaticallyniceseverything(seetheC sheU "nice"conunand) tothisvalue.Defaultis I0.

-.m &uas/_e

Never letany IXogmm use mine dum thismemory. Only usuallya problem with the-J option

intllen.See "limitdatasize"incsh.Defaultis12Mb (i.e.,"-m 12m" or "-m 12000k').

--molam_

Sun Rekase 4.1 Last change: local 1

COMMAND (1) USER COMMANDS COMMAND (1)

Placetreeinfile"stem.lreetname("stem.lree"followedby tname).

-.ogenopts

Pass argument genopts as options to tgen. Multiple flags will build multiple _ numbered I,
2, etc. The argument genopts should be enclosed in quo_. Se_ tgen(l) for tgen options.

-p propts
Run tprune with options propts on all uees. The argument propts should be enclosed in

quotes. See tprune(1) for tprune options.

-R • n Make (n-l) _ after the first Ir¢¢ using the "-R r" option to tgen, as well as any options men-
tionod in the --o option (multiple --o options should not be used). This option is currvnfly
unuseable.

--t cputime
Never let any program use more than this many seconds. (See "limit cputime" in the C shell)
Default is 2000 seconds(i.e."-t2000").

SEE ALSO

attr/butes (1), mkb/d(l), tchar(1), tclass(l), t&en(l), tpruae(1), ttest(1).

Sun Release 4.1 Last change:local 2

COMMAND (1) USER COMMANDS COMMAND (1)

NAME

sample - randomly sample lines from a file

SYNOPSIS

sample Mines [-r] [-N Nlines] [.o output] [-p pd,name [-s seed] [-t rejects] _es

DESCRIPTION

sample does random sampling of lines in a file, with or without replacement. It also allows optional
collection of the urmmnpled lines for use as a test file. Users of IND usually do not need to call sam-

pie directly. Instead, mkbkl (which then calls rumple for you) should be used.

OPTIONS

-.r

.,-Nn

-o_e

Sample with teplacemenL The default is wilJl_tlL

If n, the size, of the input file is known, the -N option makes the sampling algorithm more

efficient in space and time.

Put output into 0/e, otherwise outixtt goes to stdouL

--p pd,name
Partition the file into p equal pieces, no random sampling. Place the i-th partition in the file
marne and the rest go to the usual sample OUqmL Used for cross-validation with i in 1,...,o.

The tint mluraem M/nes is ignored with this option but some integer still needs to be presenL

-4x U_e x as a seed to tbe mulom number gemnttor.

--t f_e Put rejects into ft/e (if the -r option im't used), otherwise rejects Ire di.w.arded. Rejects ate

lines not included in the sample.

SEE ALSO

Sun Release 4.1 Last change: local 1

COMMAND(1) USER COMMANDS COMMAND(1)

NAME

tchar - convert a tree to or from character format

SYNOPSIS

tchar I--a] attr/buze.,fde tree/n treeout

DESCRIFrION

tchar converts a tree from usual binary format to character format. This can be useful for manual

pruning or alterations to the tree. Convert the tree to character form, edit, then convert back to binary
form. It can also be used for creating input to tllendta, or for uansfen'ing trees to another computer.

Each line contains an indented node description. Lines m,e in printed in a different order to tprint
(with a right to left pre-order traversal instead of a left to fight). Fields me: node type, class counts for
examples at that node for each class followed by the total count, and leaf probability in parenthesis.

Test nodes have additimal node-flags(see data sUrucUtres),and a representationof the test made (cuts
begin with 6, discrete splits with 10). Option uees are more complicated again.

For example, given the tree below, grown using "mklree -o '-tA1 -P0,-0.7,02' hypo" and printed using
"Iprint._d hypo.am hypo.tree",

TSH < 6.05:+0+31840+0 negative
TSH >ffi 6.05:

TSH_measured = f: +04-36+0+0 negative
TSH measured = t:

Ff'l < 64:

I query_hypothyroid = f:

I I T4 < 1.45:+04.0+13+0 primary_hypothyroid
I I T4 >= 1.45: +0+1.tO4_ negative

] query_hypothyroid = t: +0+1+i+0 primary_hypothyroid
FTI >= 64:

I m_myroxine = f:

I I T4_measm'ed = f: +0+0+1+0 primary_hypozhyroid
I I T4_measmed = t: +23+0+Ot0 compensated_hHx_yroid
I re_thyroxine = _- +0+6+0+0 negative

and running "char hypoatttr hypo.uee hypo.ctr ; cat hypo.clx" we get the following:

SIZE: 15 8 0 0

PRIOR: 1 0 -0.7 2 0 20

10 23+362+15+0 = 400 (0) 20 6 18 6.05 (0.000000 0.000000)

1, 23+44+1540 = 82 (0) 20 10 17 (0.000000 0.000000)

1, 23+8+15443 ffi 46 (0) 20 6 26 64 (0.000000 0.000000)
1, 23+6+1+0 = 30 (0) 20 103 (0.000000 0.000000)
2, 0+6+0+0 = 6 (0)
L 23+0+1+0 = 24 (0) 2OtO23 (0.000000 0.000000)
2, 2.3+0+O+Offi23 (0)
2, 0+43+1+0 = 1 (0)

1, 0+2+14+0 = 16 (0) 20 10 10 (O.U)O000 0.000000)
2, 0+1+1+0 = 2 (0)

1, 0+1+13+0 = 14 (0) 20 6 24 1.45 (0.000000 0.000000)
2, o+1+o,o = 1 (o)
2, 044)+13+0 ffi 13 (0)

2, 0+36+0_ = 36 (0)
2, 0+318+0+0 ffi 318 (0)

Notice the node and leaf counts respectively are given after "SIZE', details of the original prior

Sun Release 4.1 Last change: local 1

COMMAND (1) USER COMMANDS COMMAND (1)

specified with the -A and -P options are given after PRIOR and each line following represents a node
or leaf. Test nodes begin with 1 and leaf nodes with 2. The first line of counts indicate the training set
had 400 examp_s, 362 of the most common class. The first test on "TSH" has attribute number 18,

"negative" has class value number 1, etc.

OPTIONS

-41 Converts in the reverse din_on (from character to binary).

If its a tree with counts instead of probabilities, assume the leaf counts are correct and total all

other counts and totals accordingly.

SEE ALSO

tsenata(D,tt_t(1).

Sun Release 41 T ._t rhine,'" Irse_l "_

COMMAND(1) USER COMMANDS COMMAND(!)

NAME

tclass- classifya testsetusinga decisiontree

SYNOPSIS

tclass{options}attributefiletreefile(s)[testfile]

tclass [options] stem

DESCRIPTION

tclam takes a test set and classifies it according to the given tree(s). The test set has the same format

as the input data for _en so a decision attribute must be given. The second form uses the stem instead
of explicitly specifying the attribute, examples and outputfilesand assumes files "stem.arlx", "stem.bld"
and "stem.tree" exist.

If multiple n trees ale input, the final class lxobability vectors titan each tree are merged (by default,

averaged) to give an fa+l)-th laediction. This is termed the "multiple tree". Statistics can be reported

for both the individual trees and/or the multiple tree. The facilities in tllen for generating multiple u-ees
a_ currently under t_-pair so this option is currently not useable.

If the attr/bute fie contains a utilities specification, then average utility is also printed with any statis-
tics and the best decision is calculated to maximize expected utility. Otherwise, the class with max-

imum pro_b'dity is chosen (i.e., minimmn emxs udlity).

The usual output mock for tclam is fairly verbose. Output will be brief and restricted to a single Line
with the --b option. The order of out[_t in this cue is the same as for veFoose mode except that no

explanation, etc. will be given, simply a line of numbeas. The order for a single tree is as follows: per-
contage correct, half-brier score, indic_ percentage _t (with -s option), standard deviation of

prediction (with -v option), log posua_ wo_b'dity (with --g option), node count and expected number

of nodes (with -i option), utility on training sample (if utilities exist in am-/bate fie.), and if the tree
was grown with cross validation, the cax_s validation estimate of percentage accuracy and its standard

deviation (with =O option).

OPTIONS

-A alpha
Same optionsasfortreepriorasintllea.

-b Make summary of performance briefer. Useful if the output is later piped to a statistics Wo-

gram.

-.c Print for each example the given class. This opion combines nicely with option -d.

-D Print for each example the decision for each tree (use with the -m option).

-41 Print for each example the decision for the single tree, or if several trees exist, the multiple
tree. This option combines nicely with optioa -c.

•-e Print for each example and for each Ixee whether the decision agreed with the actual class

(l=yes,0,,no).Usefulforcomparativestatisticalanalysisof treeaccuracy.

•._ Print out the postexior for the trees as well (tak_ from the header).

--G Assuming the ur_ was generated using the -.C option of riga using cost-complexity imming,
this prints out the¢ax_ estimateforthe tzeecalculatedduring the cross validation procedun_.

Only works if the tree was pruned with the -n option rather than Bayes pruning. Notice the
estimate will be biased because the cost-complexity _ff parameter was selected to minim-
ise e.n'm_.

-4 Printout theleafcomR (boththeexpected and x:lual sizes) foreach t_e.

-mn Classify multiple trees, where n is the number of trees. The n trees are listed in the tree=file(s)

m3umenL If the -m option is not used, one trt_ is assumed.

COMMAND(1) USER COMMANDS COMMAND (1)

-0

-P

-S

--V

-W

-Z

Choose best decis/on simply by picking the class with highest probability (i.e. ignore utilities).

For each example, print out the probability estimates for each class and for each tree (use with
tbe -m opt/on).

For each example, print out the probability estimaws for each class for the single tree, or if

several trees exist, the multiple tree. When coupled with the -v option prints _eir variance as
well.

Print out details of the tree prior (assumed constant across multiple trees) once at the begin-

ning.

When using multiple trees, prints out a matrix reixe_nfing differences between trees. The
second row and column of the matrix _ the differonees of other trees with the second

tree, etc. (the last row and column, the multiple tree). Useful for determining which single
tn:e is most similar to the multiple tree. Differences are measured in terms of the proportion

of examples on whose classification two uees disagree (in the upper triagonal) and the average
over the examples of the nmnhatt_ distMce between class probability vectors produced by two

trees on am example (in the lower u'iagonal).

Print out a summary OFperf(xnmrge for each tree (use with the -m option).

Print a smnmary of performance for the single tree, of if sevega] trees exist, the multiple tree.

This includes accuracy, mean square error, expected accuracy (the classifier's prediction of
what acctwacy it should have got, found by averaging the class pmt_ilities at the leaves) rail

an optional average utility. Expected accuracy is usually an over esdnmte, except in the case of
a small treewith "lots"of data,cg in the case of an ¢_on treebuiltasing the -J optionto

_en andtea]_icwiarparang_rs.

Print out with the other smfist_ a misclmsificatioumatrix of predictedclassesby actual

classesfortrees(eitherthe-s or the-S eptkxu must be used).

How tohandlemknowns when classifying.The methods availableare:

1 Send the unknown down each branch with proportion as foond in the training set at
that node.

3 Send unknown down themost common branch (the default).

4 Send the w_mown down a single l_anch chosen with probability proportional to that

found in tbe nining set at that node.

For each example, a variance of the expected accuracy is calculated. The average of these
is theft printed. Unfortunately, this is not a vamuge for the expected accuracy of the

sample (dus much nmm complicated formula is not calculated), but tbe value gives a generous

ova'-estimme of the imim_is/ou in the c=pec_ accmacy of the sample.

"wl ... win"

When averaging class Wohab]lifies from multipk trees, weight the i-th tree by the weight wi

(only use with the -m option). Weights are white spire delimited (so the argumentmust be
etr, lused in quotes). To c,onsm_ the argument automatically, thead and an awk-like program

may be me, Sd.

By default, leaf nodes which have zero cotmt are as_gned the same class probabilities as their
i_.aL With this flag set, zero-comttnodesare assignedtheclass pmhabilities found at the root
of tbe tree.

SEE ALSO

tgen(1),t;wune(1),mkJree(1),ttest(1).

Sun Release 4.1 Last change: local 2

COMMAND(I) USERCOMMANDS COMMAND(I)

NAME

tgen - generate a decision tree

SYNOPSIS

tgen [options] attribute.file e.xample)Ue tree._le

DESCRIPTION

tgen takes a data set (see attributes(l) for a description of the data file formats and/IND/Data/thyroid

for a sample data set) and builds a decision tree. Options allow CART style cost-complexity pruning
by test set or by cross validation, and a wide variety of splitting roles such as Bayesian, information

gain and GIN] methods. Subsetting is implemented. Various hacks exist for handling missing values.
_ead can be programmed with the -13 option, and early stopping (j_re-pruning) with the -J1

option. Interactive mode (the ..43 option) also displays graphs under X.11 of the cut-point profiles, if

you wish to control the growing operation more closely.

The Bayesian option uees for averaging is started by combining the -B, -J, and -K options. This is in

development stage, and is a simplistic search that requires large amounts memory and time, so it may

have to be nurse_. See option descriptions and begs. The -B option allOWS n-ply lcx_d_ during
splitting (all other splitting rules use l-ply ioukahead). Use 2 or 3-ply to get bettex performance on

small problems, or combine with the -bq2 option in tprune to get even more sophisticated search for
the single best tree. Option trees are initiated with the -J option, and are best combined with solid
stopping rules such as a depth bound (the .-d option), and the set size bound (the -s option). The -K

option is for post-lxuning of option frees only. A typical option combination might be:

Igen-t-B2,4 -J4-K4 -d5 -s4 ...

depthand setsizebound shouldbe chosen withtheapplication in mind.

OPTIONS

•-a Write out tree in character format instead of usual binary.

-A ,_,ha
Probabilities at leaf nodes are calculated usingtheLaplace formula:

(#this<lass + a/pha/#classes)/(#total + a/p/m).

where

#this<lass = count for this class at this node
#total = uxal count at this node

#classes = nmnber of classes

Note the class firequencies sum to 1. The default is a/pha=l. This flag also effects the opera-

tion °f the -t tlag bec'ause a/pha is used as a lmor Pmmw'ter" See also the -P options.

-B depthJweadth[,factI

When tree growing thexe is an initial beam-sea_h n-ply ionkahead phase m evaluate the qual-
ity of each test. At each step when doing this, choose the best breadth choices for each _t

tlm are within fact of the best,and add theseas optionson the seazchbeam. Lookahead to

depth depth. Only s_ported with the -4 option. Default values are I,I,0,00001.

-¢ prop Build Iree Dora a proportion prop of the exmnples selected at random; prune _ using cost-
complexity priming with test set on remainder. A typical value to use is 0.7. See the -43

optionin tclassfordisplayingthe errorestinutte,and the --poptionbelow forsettingthe stan-

dard enors.

-4_fot_
Build tree using folds-fold c_oss-va_gm c_st-complexity pruning. CART recommended

value is 10-fokL See the -43 option in tclass for displayingthe errorestimate, and the -p

o_on below for sel_g the standard _ A second --C fold_ on the command line will have

tgen report additional information calculated during the pruning operation.

Sun Release4.1 Last change: local I

COMMAND (l) USER COMMANDS COMMAND (1)

..d depth
Stops btfilrfing tree after depth depth. By default is set to number of attributes plus twice the
number of continuous attributes.

I Use GINI index of diversity when splitting.

-J breadth[lact[,add.fact[,le_f.fact]]]
Does option tree growing with magic numbers Io Idler the search slrategy, and requires use of
the -B option (at the very least, -BI,2). After initial lookahe_ has found a candidate set of
tramnodes, grow as distinct optimal su_-uees the best bre.a_ test nodes within/act (default =
0.005) factor of the best. The last two magic numbers modulate early stopping of pre-prunmg.
Only grow b_e node ff the mm-l_f Wobsbility is wi_n a fac_ iearffact of leaf probability
(default - 0.00001, make this clmer m 1.0 to stop earlier) and ff Ihe non-leaf probability is not
greater time a factm add.fact of Ihe best test to grow (defauh_.75, make this smaller to stop
earlier). Thisoptimisoelymppoeedwi_ the --t opdm. Should be used wi_hoptions-dand
--s to help limit se_ch _l option -K to save memory.

-.Kbread_ _facti
Does post.lmming an a_on tsees wi_ magic numbers ta alter the search. Keep only the beu
breadth (default - 1) option branches aml only choose those within a fact (default = 0.005) fac-
tar of the best. Only _ with the -t optim.

-M Mmhall modificatim to gain.

--N When rainsthe.-tor-J optionslheSaye8spliuingroles,etc.,areineHec_ Far these,a "log

posterior"measu_ iscemputedandusedasa nuingfarlhefree(aee-golxioaintdass).Th/s

isusallynotquitecorrectm thatthefreeprior,as specifiedwith,he--Poptionhasnotbeen
The --N op6m does the exlra caiculalioe necessary to compute this nocmalizing

comtant, which can then be displayed with the _ opti_ in tcbm. The computation can be
exponential m nature ff there are mixed camintmas or multi-valued mfibutes. The calculation

inconect if subse_g is used. Help avoid this with the -d optioe, for instance, try smaller
aem_ am.

-e Manual ovenide flag. Allows die user to manmlly choose which a_-itmte to split on, aad print
all sorts of debugging infomatm while building, thus ovenidm"g the aetommic selection
made. A menu of iateractive options is available (via the "h"conmmad) to guide the manual

buildingpt'ooess.Settingthe "x" toggle can spawn xgraph processesgivingcut pomt
profiles. Theaemay have to be killed manually. Thisol_ionim't_with the-B,-J of
-K optiom.

.-p factor
Whea cmt-cemplexity Inning, number of stand_ deviations to use. Default is 1.0. CART
recemmends 0.0 fef larger rues and (Jometimes) greater accuracy.

.4, n-we_#htJ..we_s_t,oJ_s]
This optioa _ _ee pmr i_meten node-weight and leaf.we/ght (the log-lxior for ttw.se
nodes in a me). Only the tint parame,er is _. If _e 02 bit is set in o.flags, molly
nodeweightby suberac_gthelogofthenumberoftestchoicesatthatnode.

-r oc_-/_s
Print uee at the end _ fl_e oc_ coded p_int flags octai-.Ita_s in_ as descn_ed in the
header file �INDITe. U_ful minly for debug.

-4 m/n Turnnodetoleaf(stopgrowing) ff exampleslessthanm_n.

-S type Allow binary tests oe multi-valued disc_te amibutes which split the attrilmle values into two
pare. "l'nis is "sub_eWng" implemented in a simple greedy manner, type can be one of the
following:.

O0 Regulm"subseuing of multi-valued auribu_..s.i.e, do splits _eming if the auribme is in
a certainsubset or not.

Sun Release 4.1 Last change:local 2

COMMAND (I) USER COMMANDS COMMAND (I)

02 Do binary encoding of the multi-valued attributes, i.e. do splits testing if the attribute
is a certain value or noL

-t Bayes splitting rule.

-u Apportion unknown values when evaluating splits.

-U n How to handle unknowns when splitting training set. The available methods are:

1 The default. Send the unknown down each branch with proportion as found in the
training set at that node. Not yet convinced the implementation is OK.

3 Send unknown down the most common branch.

4 Send unknown down a single branch chosen with probability proportional to that
found in tbe training set at that node.

=W cycles[,alphami_]

Do a trick susgest_ by Wallace and Patrick to determine the best value of a/pha (the parame-

ter passed to the -A option). Grow a tree (or option tree) with the initial value of a/pha. Then

adjust a/pha so that the poslerior _ility for the tree (for instance, as printed using the -g
option to tdass) is at a local maximum for a/pha. Now grow a tree again using the new value

of a/pha. Repeat until you've done cycles cycles or a/pha has changed no more than accuracy
0.01 from the last cycle. In addition, a/pha is prevented fium going below alphamia. A good

cycle maximum cycles would be 4, so that at most 4 tre_ are grown. When using the -J
option, because of time, it would be better to use cycles= 1. A good value for a/pham/n is 1.0
ff you expect high accuracy, and more if you expect less accuracy.

By default, leaf nodes which have zero count age assigned the same class probabilities as their
parent. With this flag set, zego-count nodes are a._gned the class probabilities found at the
mot of the tree.

-Z

BUGS

If tgee quits with a message like "memory limit exceeded" or "time limit exceeded" then it still pro-
daces a tree, but has stopped search premannely. The tree may have been grown in a iob-gided manner

so the performance of the tree may be very poor. One can extend time or memory limits using limit
(see the -t and --m options in mklree), or decrease the search by decreasing the depth, breadth or fac-

tors in the -B, -J or -K options. It is always useful to check the "log posterior" of the u'ee using the

--g option to tclam or the -s option to thud, to see if it is smaller than the log Ix)steti_ for a tree pro-
duced without the -J option. If the -J tree's is smaller, it is Wobbly a lob-sided tree and will perform
Poorly. Likewise for "expected leaf count'.

When using xgraph to display cut-point profiles, yon will have to kill the xgraph processes yourself.

Probably lots more.

SEE ALSO

mkb/d(1),tpruae(1),tclass(l), mku'ee(1),thead(1),,pr/at(1).

Sun Release 4.1 _ change: local 3

COMMAND(1) USER COMMANDS COMMAND(I)

NAME

tgendta - generate dam to match decision tree

SYNOPSIS

_[eztdm [-_p] [-i sp_/Jq_] [-4 _aQgvlp_ts] [-6 seed] _ttributt fdt Dee

DESCRIP'IION

_endta galcm_cs d_a randomly from the dccisioa uec and outputs to stdcrr. The decision trcc is

eitl_ assumed mb¢ a classpcol_ilitynee specifyinga pml_ility distribmion,or,with the=p option,

a _ spe_cmion.

OPTIONS

-m lnpm a m_e in clmmct_ formal

=4 Generate all possible examples (or at least a relzcsenmive set if real values exist). This opuon
do_n't make _ withoutthe=p option.

-1 spacim&

With the -f option,says thatroughly s_m& examples will bc generated,equallyspaced,

when fillinginvaluesof realvaluedatn-ibum O_erwisc, two differentvalueswillbc givenat
each leaf.

•.4 e.rmnp/es

Number of exmplcs m gena'atc.Igncml with the-f option.

-.p The dam (and _y the decimm _) has no

.4 seed Seed to ini_ me randomnumber_.

SEE ALSO

tchar(l).

BUGS

Hmzd_g of rmi valnes is a lmck.

COMMAND (1) USER COMMANDS COMMAND (I)

NAME

thead - print details about a decision tree

SYNOPSIS

thead [options] [-at n] tree ...

DESCRIPTION

thead prints details about U,ee(s) built by tgen.
like tools to the -W option m tclass.

The brief options are useful when piped through awk-

OPTIONS

-A alpha

Same options as for Iree prior as in tgen.

--I Print number of leaf nodes on one line without verbage.

--I _ttrees

huff.ares how many frees, if more Ikan one.

--P opts Same options as for Iree prior as in tgen.

-P Prim information about the prior suvcUtre storeal for the tree (alpha, etc.).

--s Print leaf count, nodes, and the "weight" (the "sprob" field) which is the log probability for a
Bayes uee.

-4 Print number of nodes on one line without verbage.

SEE ALSO

tgen (l), _orane(l), tctass_ (l), tpr/m(l).

COMMAND (1) USER COMMANDS COMMAND (1)

NAME

tprint- printa decisiontree

SYNOPSIS

tprint [options] attribute file tree.file

tprint [options] stem

DESCRIPTION

tprint displays a decision tree built by tgen. The second form uses the stem instead of explicitly speci-

fying the attribute, examples and OUtlet files. It assumes "$tem.aur" and "stem.tree" exist.

Each line contains a test on an attribute value pair. If the test leads to a leaf, information about the leaf

is printed at the end of the line. If the test leads to a subaee, the sublree is printed (indented four

spaces) below the test.

Using lhe -4 option, a test set cast be run tla'oush the data to display, at a glance, how the tree classifies

the test set. Useful for finding out where in the tree is making the most avers.

Various other options allow details of internal nodes to be printed, leaf posteriors, standard deviations

of probabilities, and classification probabilities (in an averaged tree, leaf pmbubilities usually differ
front final probabilities forexamples at that leaf).

If the m:e is currently in counts form, and the printing options you specify require it to be in probabil-

ity form, then an appgvwi_ conversion will be done.

OPTIONS
-A

--41

--b

Same optimts as for tree prior as in tllm.

Read _ in in characta" fornmt (llodignd by tghar).

By default, probabilities displayed USing the -p option ale for those at the node. This option

displaysthe finalpmbubilifiesthatwould be used by the classificationroutine,afteralltree

averaginghas been done.

-c Display counts of training set exampks in each class. The counts are printed out in the same
onler as the classes aiq)ear in the auxibute file.

-D n Only print out treetodelxhn.

--d Display the best class (thedecision). Takes account of utilities or cut-off Wobubilities.

-E Same optiom m for tree prior as in tim.

--i Display counts, etc., for interior (non-leaf) nodes as weft.

-p Display pmpo_on t_ each class (number of training set examples in that class divided by the

total number of training set examples at the node). The proportions are printed out in the same
order as the classes appear in the amibute file. If flagged twice, then display standard devia-
tiom as well

-.P Same optiml as for tree prior as in qgm.

-q Dispiny pmum_ used by Iree averaging routine at each node. At each leaf node, L labels the

posterior Wobubility of that leaf node being in a tree. For options, P labels the posterior proba-
bility of that option being the w.st occtaring in a tree.

-t test.fl/e

This processes a test file test.fie as would nommlly be done by glass to produce vectors of
class counts at each node. These ale printed as for the .-c option. The method of handling

unlmowns can be set using the -13 option.

How to handle unknowns when classifying.The available methods are:-Ufl

Sun Release 4.1 Last change: local 1

COMMAND (I) USER COMMANDS COMMAND (I)

-Z

1 Send the unknown down each branch with proportion as found in the waining set at
that node.

3 Send unknown down the most common branch (the default).

4 Send the unknown down a single branch chosen with probability proportional w that

found in the u-aining set at th_ node.

By default, leaf nodes which have zero count nte assigned the same class probabilities as their

parem. With this flag set, zero-count nodes are assigned the class probabilities found at the
root of the tree.

SEE ALSO

tgen (1), thead(l), tclass (1), tprune(l).

Sun Release 4.1 Last change: local 2

COMMAND (1) USER COMMANDS COMMAND (1)

NAME

tpmne - prune a decision uree

SYNOPSIS

tprune [optiousi attribtae jile tree

DESCRIPTION

tprune simplifies a decision tree by removing (or pruning) subuees, and U_en converts the counts in the

nodes to probabilities. Flexible combinations of the different pruning algorithms are available. Can use

depth-hounded pruning, with cost-complexity or pessimistic or minimum errors pruning. Option trees,

however, can only be pruned in a depth-hounded manner. This is then followed by count to probability
conversion with or without Bayesian tree smoothing. The immed tree is written to the file "tree.p".

OPTIONS

-A

-D

-b

Same options as for tree prior as in tgm.

Prune node if all subuees make the same decision. Done after everything else.

Convert counts to probabil/des using Laplacian es_nates, and install leaf probabilities for
Bayesian Uee smoodung liner by tclmm.

-B Like the :-b option but picks the best pruned subtree and gives all its leaves a leaf probability

of 1. This corresponds m doing minimum encoding (MDL, MML) pruning because it prevents
later tree smoothing.

•=c ftlc/or

Do cost.comple_ty prutdng with wade-off set by factor. See also the -V option.

•-d depth

Before other pmuming methods, slrip everything below depth depth.

Pessimi_c pruning,one in_tion.

-.E Smqrze optiomm as for Ix_e prior ns in ¢jm.

-M Prune to minimum corms sulmee.

-n Convert counts to lXObabuitiea using Laplacian esters, and make all leaves have a leaf pro-
bability of 1, to prevent subsequent Bayesian smoothing by tclmm.

-.ooptions

When tree smoothing, prune node to leaf if it has more than options options. A good default
value m use is 10.

--Praetor

Set prune factor.The pess_is_ pruningalgorithmprunesa sut_e ifitse.'roriswithinfac-

torsumdard errorsof a pessimis_ es_mme of theerrs. The defaultfactor(when doing pes-

simis_cpruningwithoutspecifyinga factor)is1.0. Be suurem alsouse option--ewhen using

thisoption.

-P Same optiom m for uee prior ns in qlen.

-q factor
Set prune factor. When nee smoothing (option -b), remove any option branches whose pro-
po_on is less tlum this value. Default is 0.01. Setting racer lo _. :e greater than I has the

effect that all option branches utber than the best are wuned (this ,s similar la the -B flag

applied to option u'ees, but thetreeisstillablem be smoothed afterwards).

-r oc_-/laSs

Print tree at the end using the octal coded print flags octal-f, ags interpreted as described in the
header file/IND/Tree/TREEJ_. Useful mainly for debug.

-V tes_e

_sc tesO_leto deunnninc u'ade-off for cost complexity pruning. Default standard errors is 1.0.

Sun Release 4.1 Las_ change: local 1

COMMAND (1) USER COMMANDS COMMAND (1)

Prec,eed this option with lhe --c option if you wish to set the standard errors to something else.

SEE ALSO

t&en(1), tc/as$(1), thead(1).

Sun Release 4.1 Last change: local 2

COMMAND (1) USER COMMANDS COMMAND (1)

NAME

UesI - build and test trees and report statistics

SYNOPSIS

ttest[options] stem size[genopcs]

DESCRIPTION

Rest is a esh script used to control the running of experiments on trees, stem should be a simple file
name and not a pathnan_ A sequenceof Iralning/t_tspairsare generatedusingmkbkl, varioustrees

are built and tested on these using mkla'ee with different options, mid statistics can be collected in

sepanae report files or output to s_dio using _Lws. A final summary report is output to stdio using Istat.
stem is the data set stem to use, _ b the size of training sets to generate and the optional argument

genopts are default options always passed to tgen what generating trees. &enopts is by default "-uU 3".

Control of which tree generation and prune combinations to use is specified by the -T and -R options.

A typical command sequence to run MDL-like and CART-like trials on the "hypo" data set might be:

tW.s_ -T ".-uUI#-tP-.7,-.7,0'2#-A0.3" "-B" "nail" \

-T "-uUl#-A0.01#-gCl0#-p0" "#-n" "cart" \
-c -sbiv hypo 500

See the description of the -T option, below, to interln_ this. The "#'s are replaced by white space
before being passed to mktree. With this conunand, ttat will first output the following summary,

Running

tgm -uUl -tP-.7,-.7,02 -AI hypo... ; qmme -13

tgen -uUl -gel0 -p0 hypo... ; tprune -n
Redirecting results to:

hypo.triaLS00mdl

hypo.u-ial.500can

and then proceed torun the trialsindicatedusingfileshypo.bld,hypo.lree.l,etc. In this case,foreach

uee genermexl,tdass is run usingopdons "-sblv"and theoutputappended totherespecuvereportfiles.

Selection of training/W,st dala pairs is oon_ by the -C, -V and -v options. This allows cross vali-

dation, random genmaion of pmitions according to a list of seeds, or cross validation on random parti-
tions.

OPTIONS

-e clopts

Pass these options to tclus when generating statistics on individual trees. The default is "-
sv]b'.

--C folds

When used alone, dds option cancels the u._ of a seedfile (see the -V opdm). Instead
uaining/test data set pairs are geaerated from the fall data set in ctms-validafion style

folds number of folds. Tlgs is an ineff_ieat way of doing cross vafidatlon on the full test set.

If this option is followed by a-V or-v option, then samples are fast selecb-,d (using the sup-
pried seeds) and cross.validation is done with each of these samples (instead of the full data

se0, by sub-partitioning them in turn into It number of folds. This then ret_'ns a cross-

validation estimate (with variances) of the statistics produced by running ttut without the -C
option. (i.e. therepoafile_ with the -C op¢ion will be m estimate with variances of

the statistics deumnined on the test sample without the -.C option.)

-41 Normally, statistics generated are appended to the existing report files. This option says to

delete all report files at the very beginning so sugislics collected represent those generated in

COMMAND(1) USERCOMMANDS COMMAND(1)

just this run of ttesL

-D Echo the shell commands issued by ttest. This option is useful for debugging or learning how
to use the system.

-k On abnormal exit, by default mkelean will he called, this option cancels this defaulL

-I Uopts

Pass these options to Istat when generating the final summaxy report. The default is "-f 2 -v
1,2,3,7".

--O Output all results to sulio. With this _, the filename modifiers to the -T and -R options
a_ assumed not to exist.

-R ran tr/a/prime

TI_ is rather fike nmnmg -T trial prune name five times and combining the output. Make 4
u_es after the first tree using the "-R ran" option to tsen, as well as any options mentioned in

tr/a/. Only one -R option can be used, and it is incompatible with the -T option.

-T trial pranelist namelist

For each value tprune in the space delinfitedfistprunelist and c_g name from
namelist, build a tsee using the command "mktree -o _ -p ¢orune" and append the statistics

gathered f_m tclass to the file "stem.lriai_ nmne', tclass is ran with the -b option. Any

"#" in It/a/ortprunefor mktree will be w,placed with a space clmracter. The name//st argu-
me,at is assumed not to exist ff OUq_ut is to sldio. The list of Inning q_tions means that you

can grow a nee once and then prune it in several different ways to lest. When lassng op_ons
"-n" to _rune, always use "#-n" because the mlm'ee implementation causes a single "-n" to

disappear. The -T option can occur multiple timm (up to 6) and the trials will be run con-

currently.

-V seedfure
One Irial is ran for each tzain/test pair of the dala seL A list of seeds a_e passed one at a time

to mkeuc to f_nerate these different tntin test pairs. The seedfffe is a file containing white

Sl_ce-separated integers to use as seeds. The default is ".Jseeds'.

-v seed.list

Seeds are set f_m the space-separated list c(integers supplied as argument.

SEE ALSO

mkb/d(1), tchar(l), tclasa(l), t&en(l), mktree(l),

Sun Release 4.1 Last change: local 2

XGRAPH(1) USER COMMANDS XGRAPH (1)

NAME

xgraph - Draw a graph on an Xll Display

SYNOPSIS

XlFaph [options] [=WxH+X+Y] [-display host:display.scrnen] [file ...]

DESCRIPTION

The xsraph program draws a graph m an X display given data read from either data files or from start-

dad input if no files are specified. It can display up to 64 independem data sets using different colors

and/or line styles for each set. It annotates the graph with a title, axis labels, grid lines or tick marks,

grid labels, and a legend. There an: options to control the appearance of most components of the

graph.

The ir_t format is sinfilar to &rapA(IG) but differs slightly. The data consists of a number of d_ua

sezs. Data sets Ke _ by a blank line. A new data set is aiso assumed at the start of each input
file. A data set consists of an ordered list of points of the form "[directive} X Y'. The directive is
either "draw" or "move" and _ be omitted. If the directive is "draw', a line will be drawn between

the wevious point and the currmt point (if a line graph is chosen). Specifying a "move" directive tells

xgmph not to draw a line between the points. If the directive is omitted, "draw" is assumed for all

points in a data set except the first point where "move" is assumed. The "move" directive is used most
often to allow discominnous data in a data seL The nmne of a data set can be specified by enclosing

the name in double quotes eft a line by itself in the body of the data set. The trailing double quote is

optional. Overan snq_g options for the gral_ can be specified in data me, by writing lines of the
fot,m "<optimt>: <value>'. The option names ire the same as those used for specifying X resources

(see below). The option tad valm must be sepmmd by at bleast one Wace. An example input file
with three data sets is show, below. Note that set thrne is not named, set two has discontinnous data,

and the title oftbe graph is specified near the top of tbe file.

TitleText: Sample Data
0.5 7.8
1.0 6.2

"set ode
1.5 8.9

"set two"

-3.4 IAe-3
-2.0 1.9e-2

move - 1.0 2.0e-2

-0.65 2.2e-4

2.2 12.8

2.4 -3.3

2.6 -32.2

2.8 -10.3

After xgraph has read the data, it will create a new window to graphically display the data. The inter.
face used to specify the size and location of this window depends on the window manaser cmrently in
use. Refer to the refe_mce manual of the window manager for datails.

Once the window has been opened, all of the data sets will be displayed graphically (mbject to the

optiom explained below) with a legend in the upper right comer of the screen. To zoom in m a IXX-
of the graph, del_SS s mouse button in the window and sweep out a region, x&raph will

open a new window looking at just that portion of the graph, xgraph also Wesents three control buttons

in the upper left corner of each window: Close, H_'dcopy. lind About. Windows are closed by depress-

in8 a mouse button while the mouse cursor is inside the C/ose bulton. Typing EOF (comroi-D) in a
window also closes that window. Delxessin 8 a mou_ button while the mouse cursor is in the Hard-

copy button causes a dialog to appear asking about Iwdcopy (jmn_0 options. These options are

Sun Release 4.1 Last chan_ze: December. 1989 1

XGRAPH (1) USER COMMANDS XGRAPH (1)

describedbelow:

Output Device

Specifies the type of the output device (e.g. "HPGL', "Postscript", etc). An output device is
chosen by depressing the mouse inside its name. The default values of other fields will change
when you select a different output device.

Disposition
Specifies whether the output should go din_tly to a device or to a file. Again, the default

values of other fields will change when you select a different disposition.

File or Device Name

If the disposition is "To Device', this field specifies the device name. A device name is the

same as the name given for the -P command of Ipr(l). If the disposition is "To File", this

field specifies the name of the output file.

Maximum Dimension

This specifiesthe maximum sizeof the ploton the _ device in centimeters, xgraph

takesin accountthe aspectratioof the pkx on the screenand willscalethe plotso thatthe

longersideof the plotisno more than the valueof thisparameter.Ifthe devicesupportsit,

the plot may also be rotated on the page based on the value of the maximum dimension.

IncludeinDocmnent

Ifselected, lifts of/don causes xgraph toproduceharcopyoutputthatissuitableforinclusionin

otherlargerdocmnents. As an example, when thisoptionisselectedthePostscriptoutputpro-

duced by xgra@hwillhave a bounding box suitableforusewith psfig.

TitleFont Family

This fieldspecies the nan_ of It font to use when drawing the graph title. Suitable defaults

a_ initially chos_ for any given hardcopy device. The value of this field is hardware specific
- refe_ m thedevicerefenmce manual for details.

Title Font Size

This field specifies the desired size of the title fonts in points (1/72 of an inch). If the device

suppoctsscalablefonts,thefontwillbe scaledtothissize.

Axis Font Family and Axis Font Size

fields are like Title Font Family and Tide Font Size except they specify values for the
font x&raph uses to draw axis labels,and legenddescriptions.

Conm)l Buttons

Aft_ specifing the pmanu_rs for the plot, the "Ok" button causes xgraph m produce a hard-
copy. Pressingthe "Cancel"buttonwillabortthe hardcopy operation.Depressingthe About

beam causes Xgraph to display a window containingthe v_rsion of the program and an elec-

tronic mailing address for the author for comments and suggestions.

x&raph accepts a large number of options most of which can be specified either on the command line,

in the usa's .Xdefanlts or .Xresources file, of in the data files themselves. A list of these options is

given below. The command line option is specified first with its X default or data file name (if any) in

parenthesis afterward. The format of the option in the X defaults file is "prognun.option: value"where
wogram is the pcognun mm_ (xgraph) and the option name is the one $1_x:ified below. Option

specifications m the dala file me similar IotlmX defaultsfilespecificationexcept the pt,ogram name is
omitted.

=WxH+X+Y (Geometry)

Specifiesthe initialsizeand locationof the xgraph window. --<digit><mune> These options

specify the data set name for the carrespmding data set. The digit should he in the range '0'

to '6Y. This name will be used inthelegend.

--barOhrGraph)

Specifies that vertical bats should be drawn from the dam points to a base point which can be

Sun Release4.1 Last change:December, 1989 2

XGRAPH (1) USER COMMANDS XGRAPH (1)

specified with -bib. Usually, the -nl flag is used with this option. The point itself is located
at the center of the bar.

-bb (BoundBox)

Draw a bounding box around the dala region. This is very useful if you prefer to see tick
marks rather than grid lines (see -tg).

-bd <color> (Border)
This specifies the border color of the x&raph window.

-hi <color> (kcklp'o_d)
Back41rom_ color of the xgrapk window.

-brb <ba_> (BarBwe)

This specifies the bese for a bar graph. Bydofanlt, the base is zero.

-..brw <width> (BarWklth)

This specifies the width of bars in a bar graph. The amount is specified in the user's units. By
default, a her one pixei wide is drawn.

-bw <slze> (BorderSize)

Bo_ier width (in pixeis) of the xsropk window.

-db (1)ebq)

Causes xgraph m nm in synchnmous mode and prints out the values of all known default.

-t 8 <color> OForqFomld)

Foregn_umd color. This color is used to draw all text and the normal grid lines in the window.

(GrklSbe)
Width, in pixeL_, of non_ grid

-m (Grkmtyk)
Lble style pm_ of normal ip_Jlines.

-if <fenmame> (LabeWeat)

font All axis labels _ Ipid labels are drawn using this foal A font name may be
specified exactly (e.g. "9x15" or "-*-courief-bold-r-nonnal-*-140-*") of in an abbreviated foam:

<famfly>-<size>. The family is the family name 0ike helvetica) and the size is the font size in

poinls (like 12). The default for this pmmneter is "belvetica-12".

--lax (LeSYO
Specifies a logarithmic X axis. Grid labels represent powers of ten.

-_y (LesY)

Specifies a lopfithndc Y axis. Grid labels represent powers of ten.

-4w widt_ (x_eW_,,.)

Specifies lhe width of the dam lines in pixels. The default is zero.

-ix _ (XL_Lmlt, XilillhLimlt)
This option limits the range of the X axis to the specified inm'val. This (along with -ly) can

he used tO "zoom in" on a ptrticularly interesting poNion of a larger graph.

-iy _71,.yl_ (YLowLi_:_ YHighLimlt)

option limm the range of the Y axis to the specified interval.

--m (Markers)
Mark each data point with a distinctive marker. Tharc arc eight distinctive markers used by

xgraph. These nmtm,s are assigned uniquely to each different line style on black and white
machines and varies with each color on color machines.

-M (StyleMm'kers)

Similar to -m but markers are assigned uniquely to each eight consecutive data sets (this

to each different line _tyle on color machines).

Sun Release4.1 Last change:December. 1989 "_

XGRAPH (I) USER COMMANDS XGRAPH (I)

--al (NoLines)
Turn off drawing lines. When used with -m, -M, -p, or -P this can be used to produce scatter
plots. When used with -bar, it can be used to produce standard Imrgraphs.

--p (PixeiMarkers)
Marks each data point with a small marker (pixcl sized). This is usually used with the -nl
option for scatter plots.

-P (LargePixels)
Similar to -p but marks each pixel with a large dot.

•-rv 01everseVideo)

Reverse video. On black and white displays, this will invert the foreground and background
colors. The behaviour on color displays is undefined.

-t <string> CTitleText)
Title of the plot. This string is ceatteredat the top of the graph.

--if <fmtmame> (TitleFeat)
Title font This is the name of the font to use for the graph title. A font name may be
specified exactly (e.g. "9x15" or "-.-coerier-boid-r-nonnal-.-140-*") or in an abbreviated form:
<family>-<size>. The family is the family name (like helvetica) and the size is the font size in
points (like 12). The default for this Immn_ter is "helvetica-18".

--O, flicks)
This option causes x_aph to draw tick marks rather than full grid lines. The -I_ option is also
useful when viewing graphs with tick marks only.

-x <uaitamae> (XUalfrext)
This is the unit name for the X axis. Its default is "X'.

-y <un/tume> (YUnitText)
Th/s is the trait name for the Y axis. Its default is "Y'.

-zll <color> (ZeroColm')
This is the color used to draw the zero grid line.

-zw <width> (ZeroWidth)
This is the width of the zero grid line in pixels.

Some options can only be specified in the X defaults file or in the data files. These options are
described below:

<digit>.Color
Specifies the color for a data set. Eight indepemkat colors can be specified. Thus, the digit
should be betwem '0' lind "7'. If there are mote than eight data sets, the colors will repeat
bet with a new line style (see below).

<diO>atTte
Specifies the line style fog a data set. A string of ones and zeros specifies the pauern used for
the line style. Eight independent line styles can be specified. Thus, the digit should be
between "0"md '7". If there are more than eight data sets, these styles will be reused. On
color workslatim_ one line style is used for each of eight colors. Thus, 64 tmique data sets
can be displayed.

Device Tim default output fenn _ in the htmkopy dialog (Le. "Postscript", "I-ll_L", etc).

Dhqpo_Uiom
The default setting of whether output goes directly to a device or to a file. This must be one of
the strings "To File" or "To I_vitm'.

FileOrDev

The default file name or device string in the hardcapy dialog.

Sun Release 4.1 Last change: December, 1989 4

XGRAPH (I) USER COMMANDS XGRAPH (I)

ZeroWkltb

Width, in pixels, of the zero grid line.

ZeroStyle

IAne styk pauem of _e zero grid line.

AUTHOR

David Han'ison Univ¢_ity of California

BUGS

- Zooming in on bar graphs doesn't work right.

- There is no way to produce Imrdcopy without nmning xgraph inleracUvely.

Sun Release 4.1 Last change: December, 1989 5

Chapter 5

Installing IND

5-1

5-2 CHAPTER 5. INSTALLING IND

5.1 Introduction

IND is a suite of C programs Lnd C shell scripts for building cl_sifiers (i.e. , supervised learning).

The code is provided (and sometimes even moderately documented) so you can develop your own

extensions. IND wu developed exclusively in a SUN workstation environment under various releases

of SunOS UNIX, and can compile under "cc" or "gcc". The IND package really needs an X.II

interface or something similar to hsadle all the processing done by mkbld, mktree, and ttest.

Note, ... First time users should see the companion note in "IND/Doc/Itelease.tex'.

5.2 Overview of the IND Directory

Scriptl: The "Scripts _ directory ¢onts_ns all sorts of useful Ucsh" scripts which are usually docu-

mented in their beginning, and some have man entries.

Statllb: This contains the C library of statistics] functions used in the various programs.

TreeHb: This contains the C library of tree processing functions for read and write, grow, prune,
etc.

Eglib: This contains the C librsry of example and contingency-table processing functions.

UtU: This ¢ontsius subdJreetories with general system utilities such as sampling and encoding.

Trees- The tree programs are in this directory.

Man: The man entries for most things are included.

Doc: Various forms of documentation exist. The man entries are elsewhere. The subdirectory

"course r details a 4 week 3rd year undergrad, course on trees, part of which is duplicated
in the manual. Latex source for the INT) manual is in "manual" which also contains a

bibliography and the RIACS copyright. "Eeleue.tex" is a LaTeX document that you should

look at before anything else.

Include: The header and include files for the many data structures (trees, sets, examples, ...) are

here.

Data: T]_ is a sample data file directory which you can peruse to get an idea of data forraatting,

attn_oute file wpecifications, etc. Also, run the progrsmz on these to test the system after

installation.

5.3 Installing the Code

1. Check for machine compat_ty by looking at

• L_/quickfit.c (top few #defines)

• Include/Lib.h Out few lines)

• Include/SET_h (at the top)

5.4. WARNINGS 5-3

for potential storage type and alignment problems. The system has only been complied on

SUNs, so expect major problems on other UNIX machines. Some things like alarm() (in

Trees/tgen.c) and ftime 0 and Ustruct timeb" (in random.c), and a few others are used, which
tend to be UNIX version dependent.

2. Modify the primary "Makefile" to add your "BIN" to the file. Then run "make bin". This

will modify all other IND Makefiles in the IND subdirectories so that they know where to
place the bins.

3. Similarly, modify CC and CFLAGS in the primary "Makefile" and run "make cc" and "make

r.flags" respectively if you wish to change the factory-set options.

4. Compile using _make instal". This will call make recursively in the various subdirectories to

construct the ".o" files, the ".a" libs and then go on to make the programs and put them in
your BIN.

5. This will also compile a slightly modified version of xgraph that requires certain "X i I/include"

files be on your system. If yon won't be using this, then modify "IND/Makefile" so that

xgraph would not be made, and never use the "x" option in interactive mode.

6. Add the "Scripts" directory to your own path.

7. Add the "Man" directory to your own MANPATH.

8. Run "rehash" since you've changed your path.

9. Try running some examples with "make test". Compare the output with "make.test.out".

5.4 Warnings

Software in the 'rIlVD/Bayes" directory (the simple Bayes classifier) has only been margtnally tested.

The full range of option combinations have not been tested and are not supported. In addition,

options not listed in the man entries are not supported. For those looking at the code, bear in

mind it is a research code and various features exist at different stages of development. The option
trees and -J option to tgen doesn't have anytime search control so can be di_cult to use.

Run-time trouble should really only be expected if yon are using the "-J" option in tgen which

builds option trees. This routine does a poorly controned search so can consume large amounts

of memory and time. Also the search may cut out prematurely, in which case the results are not

indicative. See the "man" entry for tgen for details.

5.5 Planned Extensions

The code for IND is distributed free of charge (see the Copyright notice in Appendix B) for research

purposes, to allow for all the tinkering researchers like to do on other people's algorithms. In this

spirit, if you would like to make extensions for inclusion in future releases of IND, we would welcome

discussions and suggestions. Bear in mind, your code will be distributed too, and maybe modified

by others in future. Here is a list of wanted extensions that may well be under construction by the

time you read this:

5-4 CHAPTER 5. INSTALLING IND

• X.II interface to the package to reproduce the tasks of ttest, etc. , with a nice point and

click interface, sad to allow interactive tree learning [7].

• Extension| to the tree methods such as probabilistic approaches to multi-variate splits and

miuing values, incremental or large hatch learning (e.g., [13]), etc.

• Other learning algorithms such sl rule learning [30, 42], regression and/or back-propagation

[11], learning Bayesian sad/or Msrkov networks [8], and probahilistic variants of case-based

or instsace-based reasoning.

• Clean up the search control sad interface to the Bayesian option trees (-J option in tgen), to

make thi, powerful method more accessible. Smarter searching for option trees together with

more compact summm7 tree to allow anytime search sad to produce results more readily

presentable.

5.6 Contact and Reporting Your Use of IND

Please notify us ofyour use of IND. We will then be able to inform you about enhancements, updates

and bug fixes. We ask that you report any application you make of IND, describing the application

sad your saalysis of the results. Please feel free to make suggestiom about desirable improvements

sad extensions, sad perceived problem areas. We regard such feedback as an essential element of

the development process. For example, feedback on changes required to get the package running
on other envircmments are welcome.

Contact details:

indOkronm.arc.nass_gov

IND Tree Package

C/O Wray Buntine, RIACS and Code FIA

Mail Stop 269-2
NASA Ames Research Center

Moffett Field, CA, 94035
USA

Bibliography

[1]L.R. Bahl, P.F. Brown, P.V. de So_a, and R.L. Mercer. A Wee-based langauge model for

naturallanguage _eech recognition.IEEE Trans.on AS and SP, 37(7):1001-1008,1989.

[2]A.R. Barton and T.M. Cover. Minimum complexitydensityestimation.IEEE Trans.on IT,

37(4),1991.

[3] L. Breiman, J.H. Friedman, R.A. Olshen, mad C.J. Stone. Classification and Regression Trees.

Wadsworth, Belmont, 1984.

[4] W.L. Buntine. Learning cl,u,sification rules using Bayes. In Proceedings of the Sizth Interna-

tional Machine Learning Wor/_hop, Cornell, New York, 1989. Morgan Kanfinam_.

[5] W.L. Buntine. Learning clu_fication trees. Technical Report FIA-90-12-19-01, RIACS and

NASA Ames Research Center, Mofett Field, CA, 1990. Paper presented at Third International

Workshop on ArtificialIntelligenceand Statistics.

[6]W.L. B,ntine. Classifiers:A theoreticaland empiricalstudy.In InternationalJoint Confer-

ence on ArtificialIntelligence,Sydney, 1991.Morgan Kaufmann.

[7] W.L. Buntine. A Theory of Lemming Classification Rules. Phi) thesis, University of Technol-

ogy, Sydney, 1991.

[8] W.L. Buntine. Theory refinement of Bayesian networks. In Seventh Conference on Uncertaintt/

in Artificial Intelligence, Anaheim, CA, 1991.

[9] W.L. Buntine and T. Niblett. A further comparison of _lJtting rules for decision-tree induc-

tion. Machine Learning, 1991. To appear.

[10] W.L. Buntine and D.A. Stifling. Interactive induction. In J. Hayes, D. Michie, and E. Tyugu,

editors, MI-I2: Machine Intelligence I£, Machine Analpsis and Spnthesis of Knotoledge. Ox-

ford UniversityPress, Oxford, 1990.

[11]W.L. Buntine and A.S. Weigend. Bayesian ba_-propag,_tion.Complez Systems. to appear.

[12]C. Carter and J. Catlett.Assessingcreditcard applicationsusing machine lemming. XEEE

E=pert, 2(3):71-79, 1987.

[13] J. Catlett. Megainduction: machine learning on very large databases. PhD thesis, University

of Sydney, 1991.

[14] B. Cestnik, I. Kononenko, and I. Bratko. Anistant86: A knowledge-elicitstion tool for sophis-
ticated users. In I. Bratko and N. Lavra_, editors, Progress in Machine Learning: Proceeding3

of EWSL-87, pages 31-45, Bled, Yugoslavia, 1987. Sigma Press.

5-1

5-2

[15]

BIBLIOGRAPHY

P.A. Chou. Applications of Information Theorlt to Pattern Recognition and the Design of

Deci._n Trees and T_Uisea. Phl) thesis, Stanford University, 1988.

[18] P.A. Chou. Optimal partitioning for classification and regression trees. IEEE T_naactions on

Pattern Analysts and Machine Intelligence, 1991.

[17] S.L. Crawford. Extensions to the CART algorithm. International Journal of Man-Machine

Studies, 31(2):197-217, 1989.

[18] A. Hart. The role of induction in knowledge eficitation. Ezpert Systems, 2:24-28, 1985.

[19] S.L. Lanritaen and DJ. SpJege]halter. Local computations with probabilities on grapkica]

structures and their application to expert systems. J. Rozl. Statist. Soc. B, 50(2):240--265,
1988.

[20] C.$. Matheus and L.A. Rendell. Constructive induction on decision trees. In International

Joint Conference on Artificial Intelligence, pages 645--650, Detroit, 1989. Morgan Kaufmann.

[21] D. Michie. The raperxrtieu]acy phenomenon in the context of softwm'e mm_ufacture. Proc.

Ro 9. Soc. (,4), 405:185-212, 1986.

[22] D. Michie. Current developments in expert systems. In J.R. Quinlan, editor, Applications of

Ezpert Sllster_. Addison Wesley, London, 1987.

[23] D. Michie. Statistical classifiers compared with decision-tree classifiers as applied to credit

scoring. In J. Hayes, D. Michie, and E. Tyugu, editors, MI-12: Machine Intelligence 12,

Machine Anal¥_ and $11nthesis of Knowledge. Oxford University Press, Oxford, 1990.

[24] J. Mingers. An empirical comparison of pruning methods for decision-tree induction. Machine

Learning, 4(2):227-243, 1989.

[25] J. Mingers. An empirical comparison of selection meaxares for decision-tree induction. Ma-

chine Learning, 3(4):319--342, 1989.

[26] T. Niblett and I. Bratko. Learning decision rules in noisy domains. In M. A. Bramer, editor,

Research and Development in Ezpert S¥_ems Ill, pages 25--34. Cambridge University Press,

1987.

[27] G. pagano. Learning DNF by decbion trees. In International Joint Conference on Artificial

Intelligence, pages 639--644, Detroit, 1989. Morgan Kanhnann.

[28] J. Pearl. Probabilistic Reasoning in Intelligent Systenu. Morgan and Kauaqhaan, 1988.

[29] J.R. Quinlan. Induction of decision trees. Machine Learning, 1(1):81-106, 1986.

[30] J.R. Quinlan. Generating production rules from decision trees. In International Joint Confer-

ence on Artificial Intelligence, pages 304-307, Milan, 1987.

[31] J.R. Quinlan. Simplifying decision trees. In B. Gaines and J. Boose, editors, Knowledge

Acquisition for Knmnledge-Based 5_/sten_, pages 239-252. Academic Press, London, 1988.

[32] J.R. Quinlan. Unknown attribute values in induction. In Proceedings of the Sizth International

Machine Learning Worhhop, Cornell, New York, 1989. Morgan Ka, fmann.

BIBLIOGRAPHY 5-3

[33] 3.R. Quinlan, P.J. Compton, K.A. Horn, and L. Lazarus. Inductive knowledge acquisition: A

case study. In J.R. Quinlan, editor, Applications of Ezpert Systems. Addison Wesley, London,
1987.

[34] J.R. Quin]an and R.L. Rivest. Inferring decision trees using the minimum description length

principle. Information and Computation, 80:227-248, 1989.

[35] J. Rissanen. Stochastic Comple_ty in Statistical Enquiry. World Scientific, 1989.

[36] J. Rissanen and Mati Wax. Algorithm for constructing tree structured classifiers, 1988. Patent
Number 4,719,571.

[37] A. Shapiro. Structured Induction in Ezpert Systems. Addison Wesley, London, 1987.

[38] P. Smyth and R.M. Goodman. An information theoretic approach to rule induction from

databases. IEEE Tears. on Knowledge and Data Engineering, 1990.

[39] P. Utgofl'. Incremental induction of decision trees. Machine Learning, 4(2):161-186, 1989.

[40] C.S. Wallace and P.R. Freeman. Estimation and inference by compact encoding. J. Roy.

Statist. Soc. B, 49(3):240-265, 1987.

[41] C.S. Wallace and J.D. Patrick. Coding decision trees. Technical Report 151, Monash Univer-

sity, Melbourne, 1991.

[42] S.M. Weiss and N. Indurkhya. Reduced complexity rule induction. In International Joint

Conference on Artificial Intelligence, Sydney, 1991. Morgan Kanfmazm.

[43] S.M. Weiss and I. Kapouleas. An empirical comparison of pattern recognition, neural nets,

and machine learning classification methods. In International Joint Conference on Artificial

Intelligence, pages 781-787, Detroit, 1989. Morgan Kaufmann.

[44] J. Wirth and J. Catlett. Experiments on the costs and benefits of windowing in ID3. In Fifth

International Conference on Machine Learning, pages 87-99, Ann Arbor, Michigan, 1988.
Morgan Kaufmann.

5-4 BIBLIOGRAPHY

Appendix A

Glossary

A-I

A-2 APPENDIX A. GLOSSARY

accuracy (of a classifier) A classifier takes a set of instances and classifies them. If it always

classifies instances correctly then it is a perfect clMsifier. In domains where measurements and

the classification itself may be noisy or uncertain and some key attributes may be missing,

it is rarely possible to classify instances with 100% accuracy. The accuracy of a specific

classify is long-run proportion of classifications it gets (or would get) correct. The error is the

complement of the accuracy (error + accuracy = 1.0). This is sometimes estimated from a

test set, but cannot by estimated from the training set. See "error estimates' in Section 3.3.4.

The theoretical rnini,rmm error that can be achieved is termed the Bal/ea error and is the

lowest possible long-run proportion of incorrect classifications achievable by any classifier.

attrlbute_file This text file contains the format description for the examples contained in the

".dta", ".bld", and ".tst" data files. The attn'buteftle can also specify utilities and constraints

on how certain attributes may be tested in a tree. For example, it is possible to prevent

attr_ute A from being tested unless attribute B has been tested as TRUE further up the

tree. For more detail see the man page attributes(I) and look at the sample attribute_file

"hypo.attr" in the directory/IND/Data/thyroid.

Bayez classifier A Bayes cl_sifier, also called, "idiots Bayes", is a shnp]e form of classifier that

assumes the sttn%utes are independent given the elms. So to predict the boolean class c

given boolean attr_utes al, a2 and as, use the formula

P,'(=alc)
P,'(cl"t,°2,,,a) = p,.(c)p,.(I¢)P,'(a21c)P,'(=,It)+ a,le)P,(a=l)Pr(aa

Using a logarithmic transformation, this becomes a linear model rather like a perceptron.

Bayesian averaging Using randomization methods, we can grow several different class probabil-

ity trees, each of which should be quite good. Since we don't know which is the "best" tree,

when classifying a new example, we can take the weighted average of the class probability

vectors each tree assigns to the example. This means we are averaging over the individual

recommendations of the trees. This and other Bayesian components of IND are explained in

[7, 5].

Bayesian smoothing A single class probability tree can be pruned in many different ways. When

classifying a tingle example, this means that the class probability vector assigned to the

example can be taken from the leaf node or any of the interior nodes as well, depending

on where pruning is done. Bayesian smoothing takes s different approach. Since we don't

know the '°oest" place to prune the tree, Bayesian _aoothing takes a weighted average of

the class probability vectors that could be assigned along a given branch. The weights are

determined using approximate Bayesian methods. This and other Bayesian components of

IND explained in [7, 5].

Bayez splitting rule This splitting rule is developed as a one-ply lookahead Bayesian estimate of

the posterior probability of the split being "correct". It is similar to information gain when

the sample size becomes large. This and other Bayesian components of IND are explained in

[7, 5].

C4 C4 is the family of decision tree]earning systems written by Ross Quinlan that superceded

ID3 [31, 33]. Recent release C4.5 is sometimes available to the academic community.

A-3

CART standsfor "ClassificationAnd RegressionTrees"whichis both a programand a book [3].
CART the program is s we]] known decision tree induction program with its roots in the

statistics community. It was one of the first such programs available commercially and also
one of the most successful. CART, the book, is an introduction to CART-style decision tree

induction and a reference manual for running CART, the program. The first few chapters of

the book are a reasonable introduction to some of the ideas in decision trees, such as handling

missing attribute values and eros-validation. Through the appropriate choice of options, IND
can be made to shnu]ate CART-style decision tree induction.

cont (type description) This is an attribute type used to specify that an attribute represents a

continuous variable, e.g. , a real-valued attribute on the interval [0,1]. See the man page for
attn'butes(1) for more information.

class probability vector Probabilities for a set of mutusny exclusive and exhaustive classes are

represented as a vector of probabilities summing to 1.0. So for the classes true and .false we

might have the vectors (0.2,0.8), (0.64,0.36), etc. Class probab;];ty trees have these at their
leaves.

context A context is an entry in an attribute _e that restricts when an attribute may be tested.

It is really a constraint on the structural form of trees that can be grown. For example, a

context al]ows one to specify that one attn'bute may be tested only if another attribute is set

TRUE. See the man page for attributes(I) for more detail.

cost-complexlty pruning A way of trading off the sise of a decision tree (its "complez.ity')

against the accuracy of the decision tree (its "eost_'). More formally, cost-complexity pruning
seeks to _se ..¢E -I- aL, the sum of the substitution error estimate SE (the number

of errors the tree makes when tested on the training set) with a constant, _, multiplied by

the number leaves in the tree L. If a = 0, then there is no penalty for a large tree. As

a gets larger, the penalty for larger trees increases. For each fixed value of a, there is an

optima] pruned subtree of the original tree that minimizes this sum. Thus, by varying a we

can generate a nested sequence of (pruned) trees, each of which is smaller--and potentially

less accurate--than the tree preceding it in the sequence. A test set may then be used to

estimate the prediction error of each tree, and the tree with the lowest prediction error is

then selected from the sequence. To summarize, cost-complexity pruning snows an ordered

sequence of pruned subtrees to be created, each of which represents a somewhat different

tradeoff of complexity vs. accuracy. A test set or cross validation is then used to pick the

subtree that yields the best prediction accuracy. See chapter 3.3.4 for more detail.

cross-valldation A way of estimating the accuracy of an induction method (in this case a tree

induction program). This is done by repeatedly holding out a small subset of the available

data, training on the remainder, and then testing the result of induction (in this case the

decision tree) by running it on the held out test set. The estimate is the average of the

accuracies on the held out test sets. This is a good ('unbiased"), though computational]y

expensive, means of estimating predictive accuracy. A"-fo]d cross validation does this by

splitting the data set into /t" pieces, and then using /t" - I of them for training and the

remainder for testing, to yield/t" clffferent train-test pairs. See chapter 3.3.4 for more detail.

cut point When an ordered attribute (e.g. , an integer or real valued attribute) is used at a node

test, the value at which to split the examples is the cut point for that test. For example, in

A-4 APPENDIX A. GLOSSARY

a decision tree that dealt with fever, if some interior node has the test "temperature > I00",

then "I00" is the cut paint for the test on the real-valued attribute "temperature".

decision node A decision tree contains two kinds of nodes: test nodes and leaf nodes. Decision

nodes occur only at the leaves of the tree and represent the class to be assigned to any
example that reaches that node. Thus, if an example reaches a]eLf node labeled with the

class "has_fever", then that example is dass_ed as belonging to the class "has_fever'.

lookahead Decision trees are typically _ using greedy search: at every node to be expanded

by introducing an attribute test, greedy search considers how benefici,_1 each test appears to

be if we grew the tree one]eve] more with that test. In effect, the algozithm is doing Ioc-I

hill-climbing where every decision about what to do next depends only upon examining the
nearest possibLUties.

Greedy node expansion works reasonably we]] in practice, and makes tree induction efficient

(because very few options have to be considered at any one time), but may not lead to optim_1
trees. Sometimes the best attribute test to instal] at a node is one that is not best in the

short term, but one that would be better in the long _erm. Lookahead considers trees of

some bounded depth, say 2 or 3 deep, that are likely to be candidates to grow from the node

currently being expanded. It evaluates the expected performance of these trees, and picks
the best tree. It then inst_11, just the first attribute test from the root of this best tree as the

attribute test for the node bein s expanded.

Depth-bounded]ookahesd is skin to lookshead in game playing programs (e.g., games like
chess). Instead ofjnst pick_ a move based on an examination of the current board, most

chess playing pro_sms lookshead several ply to examine the consequences of each possible

move, and to better evs]uate which move is best to make now. Depth-bounded]ookshesd

can increase the performance of the resulting tree. But there is a computational cost to be

paid far this advantage: depth-bounded lookabesd must examine plausible trees of some fixed

size for each node it expands. This is certainly more expensive than just "looking ahead"

1 node as with standard tree induction, and becomes prohibitively expensive as the depth

of]ookahead becomes larger than 3. The implementation of IND uses a beam search when

lookin E aheLd.

expected accuracy (of a clauiner) A classifier takes a set of instances and classifies them. H

it s]wayt e./assifles instances correctly then it is a perfect classifier. In re*1 domains where

measurements and the classification itself may be noisy, it is rarely possible to classify in-

stances with 100% accuracy. The ez_c_e_/accuracy of a classifier is the expected percentage

of future instances that the classifier will classify correctly. Note that the expected accuracy

is not a meam=e of how we]] the classifier classified the examples it was trained on, as this

would typics]]y sign_cant]y overestimate the classifier's performance on new data. Expected

accuracy is sometimes estimated by testing the classifier on a test set of data intentionally

held out of the training set. Bayesian methods use a more complex formula involving the

predictive distribution of unseen examples to estimate expected accuracy.

GINI index of diversity A candidate attribute test is evaluated by measuring how we]] it sep-

&rates the examples at that node into branches that consist of relatively pure classes. For

example, an ides] attribute test (for the two class case) is one that sends all members of one
class down one branch and sZl members of the other class down the other branch. Attribute

A-5

testsare rarelyideal,so some measure of how wellthe testsepaxatesthe classesisneeded

to evaluate how good the test is. One such measure is the GINI indez of diversity. See
Section 3.3.3.

information gain A candidate attribute test is evaluated by measuring how well it separates the

examples at that node into branches that consist of relatively pure classes. For example, an

ideal attribute test (for the two class case) is one that sends all members of one class down

one branch and all members of the other class down the other branch. Attribute tests axe

rarely ideal, so some measure of how we]] the test separates the classes is needed to evaluate

how good the test is. One such measure is the In,formation gain popularized by Quinlan [29].
See Section 3.3.3.

leaf node A treecontainsinteriornodes and tea/nodes.In a decisiontreethe leafnodes represents

the classificationreturned by the decisiontree. For non-Bsyes decisiontrees,a leafnode

typically represents a single class, and any instance that ends up in that leas node is assigned

that class. In Bayes decision trees, each lea/" node represents the assignment of a probability

that the instance belongs to ear.h possible class. For example, in a Bayes tree some leaf node

might repreent the assignment that the instance is in class HAS_FEVER with probability
0.99 and is in class NO_FEVER with probability 0.01.

logical data set Some data sets represent situations where all possible combinations of feature

values along with the correct classification can be enumerated. Typically these situations

axise with data sets derived from certa3n "logic" functions such as learning a ten bit parity

function. IND treats exham, tively enmmsrated data sets diferently than non-exhaustively

enumerated sets (see ndeb/d). Typically, the goal with enumerated data sets is to see if the

induction algorithm can learn the already known concept (or perhaps how efficiently it learns

the concept). Moreover, most logical data sets are brittle--missing a few examples usually

causes a different concept to be induced. For these reasons, IND does not break logical data

sets into sampled training and test sets. Instead, it uses the entire data set for both the

training and test set. A separate file extent, ".alr' is used by IND to indicate that a set of

examples is exhaustive and should not be partitioned.

MDL/MML The minimum description length principle, and the related min£mum message length

principle. These principles use "encoding length" to measure the quality of hypotheses. An

"encoding length" for a tree learned from a sample consists of a code for the tree together with

a code for the classifications in the sample constructed on the basis of knowing the tree and

the example types. These principles are often considered as approximate Bayesian methods

since a non-redundant code length is the logarithm of some probability measure. See [40, 2].

mean square error (of a classifler) The "true" mean square error for a class probability tree is

the average of the squared distances between the "true" class probability vector for an example

and the class probability vector assigned to the example by the tree. This is approximated

and reported by tclass as the haLf-Brier score, which is evaluated on the test set as

(o(i)- 1.o)'+ r, o(i)' ,
tree om'_ec_ on _ample i tree incoe_'ect or* ezample i

where 0(i) is the class probability the tree assigns to the i-th example.

A-6 APPENDIX A. GLOSSARY

minimum errors subtree The goal of pruning is to find the subtree of the induced decision tree

that is expected to perform best on future examples. The pruned subtree that yields the

fewest errors on a test set (i.e. , a set not used for training the tree) is the minimum errors

8ubtree and is usually what we want the induction program to return.

rnisclaszifleation matrix When a c]aszffier classifies a set of examples, some of the examples will

probably be mise.l_s/fied. The misclassifieation matrix is a table that lists the correct classes

along one axis and the class/flcation derived from the classh_er on the other axis. Each entry

i, j in the table is the number of examples of true e.lass i that were classified as class j. If the

classifier is perfect, then only the diagonal entries are nonzero. The misclassification matrix

is useful because it provides more information than the error rate alone; the matrix tells what

kinds of errors are being made.

partition (a data set) TypieaUy a user of an induction program has a single, hopefully large,

set of examples from the domain. Usually, it is dL_cult to acquire additional examples, so
the user has to make do with the set in hand. But the need to test the decision tree on a

set of examples on which it was not trained (in order to accurately estimate the predicted

performance) means that the original set of examples must be pa_itioned into a training and

a test set. So partitioning is a way of splitting one large set of examples into two or more

smaller sets that will be used for training and testing.

pessimistic pruning A way of pruning a decision tree. The basic approach is to grow the tree to

full size. Then, for each test node, compute the resubstitution error esthnate (the error of the

tree rooted at that node as measured on the oriSinal training data) and the standard error

of this estimate. Prune this tree (i.e. , replace it with a lea/" node) if the confidence interval

for the resubstitution error (equal to the resubztitution error plus some number of standard

errors, typically 1) includes the expected resubstitution error of the node as a leaf node. The

intuition behind the technique is to prune sway subtrees that do not perform significantly

better than a leaf node would at that position in the tree. See section 3.3.4. This pruning

method was used in early versions of C4 and is implemented in the]ND package.

posterior (of a decision tree) Posterior of a true is a measure of the quality of the true given

in units of probability. Posteriors in IND are reported in log-probab_ties. The IND system

believes that a tree with lag-posterior -75.4 is approximately e2-I times more likely to be the

"true" tree than a tree with lag-posterior -77.5. By comparison, a tree with log-posterior

-175.4 can be safely ignored. Trees with shnflar relatively log-posteriors are alternative can-

didates. In tree averaging, done using the -J option in tgen, trees with high log-posteriors
are collected and stored in an and-or structure.

pruning A tree grown on a training set can "overfit" that training set. That is, some of the

branches in the tree that are useful for discriminating examples in the training set may not

work well on unseen examples. In effect, the tree has achieved increased performance on the

training data by making distinctions that may not be warranted in the domain itselt'. (Keep

in mind that if the set of training examples is consistent we could always build a decision

tree that classified the training examples perfectly by making each training example end up

in its own lea/" node which would then be assigned that examples class. But this "perfect"

tree might perform quite poorly on the new examples it had not been trained on.)

A-7

Pruning is a process of eliminating many of the unwarranted subtrees lower in the tree by more

carefully examining the effect of all subtrees on the estimated performance of the decision

tree on unseen examples. Pruning is done after the full tree has been grown instead of

while growing the tree because it would be difIicult to evaluate the usefulness of some new

test at a node without also knowing the tests that would be in the tree under it. That is,

pruning is most accurate when the full subtree rooted at each test node can be evaluated.

See section 3.3.4 for detail about different approaches to pruning.

test set A tree grown on a training set typically performs better on that training set (i.e. , makes

fewer errors) than it will perform on future instances for which it was not trained. This is

the result of overfitting the training set and is ditBcult to fully prevent. Because of this,

the accuracy of the decision tree on the training data is optimistic and not indicative of the

performance one is likely to achieve with the tree when applying it to future instances. Since

we typically wish to evaluate the likely performance of the tree before actually using it to

make real decisions, it is common to partition the data available into a training set and a test.

The tree, then, is induced on the training set and subsequently tested on the test set. Since

the test set was not used when the tree was induced, evaluating the decision tree on the test

set provides an unbiased estimate of the tree's expected performance on new instances from

the domain. Of course, there are other ways of evaluating the quality of a tree that don't

require keeping aside a test set: cross validation, Bayesian methods and MDL/MML. These

usually make more efficient use of available data, so give better results on smaller samples.

training set See test set.

utilities specification (in attrlbute_file) Utilities (see below) for the domain can be described

in the attribute_file. This allows tclass to more appropriately choose the best class. Based

on the predicted class probabilities, IND seeks to maximise expected utility.

utility Not all mistakes cost the same. In medical diagnosis, the cost of false positives (predicting

someone has a disease when they don't) may be the cost of a few drugs but the cost of

true negatives (predicting someone doesn't have a disease when they do) may mean death or

permanent damage. These costsare termed utilitiesin decisiontheory (infact,costisthe

negativeof utility)and ones seeksto maYe a predictiontomaximize expected utility.

WRAY An acronym forWray's Recursive Asbor Yielder,an alternatename forIND.

WRAY_S An acronym for Wray's Recursive Arbor Yield'n System (or Softwaxe),yet another

name forIND.

A-8 APPENDIX A. GLOSSARY

Appendix B

Copyright

_-, CS

THE RIACS SOFTWARE POLICY
January 1988

Copyright O 1987 Research Institute for Advanced Computer Science. All fights reserved. This policy
document may not be altered in any manner.

I. INTENT

This section is only a summary of the intent of this document, and does not represent the actual

software dimibution policy of the Reseat_ Institute for Advanced Computer Science (RIACS).

• The sol_vam written at RIACS c.mn_ with absolutely no warranty. RIACS distri-

bum research and pt.motype, but no production, so.rare.

• The mftwtm writtenatRIACS willcontainone of two copyrightnotices,indicating

whether or not it may be redistribuled. Prototype software will contain the "res-
tricted distribution" copyright, and is for testing and comments only. Research
software will contain the "reserved distribufim" copyright, and may be given to

other pmiea.

• Any softwme written at RIACS may be modified and duplicated, however if you

modify any file you must dearly state in the file when it was altered, and who
altered it.

• You are not allowed to charge for the licensing of any RIACS software you may

redim'ibete, nor are you allowed to charge more than a nominal fee for making the
redimibetioo.

2. THE RESERVED COPYRIGHT

Everyone is granted permission to copy, modify, and redistribute any RIACS software containing

the foUowing RIACS copyright notice, hereinafter referred to as the Reserved RIACS Copyright, but
only under the RESERVED conditions stated in sections 2.1, 2.2, and 2.3.

Copyright 0 1987 Rzae.mr.hInsliwte for Advanced Computer Science. All rights reserved. The RIACS
Software Policy coataim specific terms and comiitions on the use of this softwa_, and must be distribut-
ed with my copieL _ file may be redistributed. This copyright and notice must be preserved in all
co0_ nmte ot this_.

2.1. az_ved _Oteattm

You may duplicate any soume code containing the Reserved RIACS Copyright as you receive it,

in any medium, provided that you conspicuously and appropriately publish on each file a valid copy-
right notice such as "Copyright O 1987 RIACS," containing the year of last change and name of copy-

right holder for the file in question; and keep intact the notices on all files that refer to this Software
Policy.

You may duplicate any software containing the Reserved RIACS copyright or any portion of it in

compiled, executable of object code form.

2.2. ReservedModUkation

Youmaymodifyyourcopyorcopiesof sourcecodecontainingtheReservedRIACSCopyright
providedthatyoucausethemodifiedfiles to carry prominent notices stating who last changed such files
and the date of any change.

2.3. Reserved Distribution

The whole of my work that you distribute or publish, that in whole or in pan contains or is a

derivative of software, or any part thereof, containing the Reserved RIACS Copyright, must be made
available to all third parties on terms identical to those comained in this Software Policy.

You may charge a distribution fee for the physical act of transferring such software, and you may

at your option offer warranty protection, which is not mandatory, in exchange for a fee. You may not

charge a fee for the licensing of _ed software.

You may distribute any software containing the Reserved RIACS copyright or any portion of it in
compiled, executable or object code form, provided that you cause each such copy of this software to

be accompanied by a copy of this Software Policy document; and in addition do the following:

• cause each such copy of this software to be accompanied by the corresponding
machine-readable source code; or

• cause each such copy of this software to be accompanied by a written offer, which
is good for at]east one year, to give any third party free (except for a nominal ship-

ping cbarp) machine readable copy of the corresponding source code; or

• in the case where you are a recipient such software in compiled, executable or

object code form (without the corresponding source code) you shall cause copies
you distribute to be acc_ed by a copy of the written offer for source code

which you received along with your copy such software.

3. THE RESTRICTED COPYRIGHT

Everyone is granted permiuion to copy and modify, bet not to redistribute, any RIACS software
containing the following RIACS copyright notice, hereinafter referred to as the the Resuicted RIACS

Copyright, additionally subject to the RESTRICTED conditions stated in sections 3. I, 3.2, and 3.3.

Copyright C 1987 Research halitnte for Advanced Computer Science. All rights reserved. The RIACS
Software Policy coutaim specific terms and condifiom on the use of this software. In particular, this
softwan: my not be dL_buted to any otherpartywithout explicit permission from RIACS.

3.1. Restricted Duplication

You may duplicate any source code contah_g the Restricted RIACS Copyright as you receive it,

in any medium, provided that you conspicuously and appropriately publish on each file a valid copy-

right notice such as "Copyright O 1987 RIACS," containing the year of last change and name of copy-
right holder for the file in que_on; and keep intact the notices on all files that refer to this Software

Policy.

You may duplicate any mftware Cont_inlng the Restricted RIACS copyright or any portion of it

in compiled, executable or object code form.

3.2. Restric_d ModiBcmion

You may modify your copy or copies of source code containing the Restricted RIACS Copyright
provided that you cause the modified files to carry prominent notices stating who last changed such files
and the date of any change.

3.3. Restricted Distribution

The whole of any work that in whole or in part contains or is a derivative of software, or any part

thereof, containing the Restricted RLACS Copyright, may not be made available to any other party, in
any form or medium, with the exception that nil such software will be made available to RIACS.

4. NO WARRANTY

This software is distributed without any WARRANTY from the Nations/Aeronautics and Space
Administrat/on (NASA), the University Space Research Association CUSRA), RIACS, or any person
associated with these organizations. These psrt_ DO NOT accept respousibUity for the consequences

of anyone using any of this software, for whether it serves any purpose, of for its working order.

Because all software distributed by glACS is either mmu_h or prototype software, and is free of
charge, NASA, USRA, RIACS, AND ANY PERSON ASSOCIATED WITH THESE ORGANIZA-
"lIONS PROVIDE ABSOLUTELY NO WARRANTY TO THE EXTENT PERMrI'rED BY APPLICA-

BLE STATE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING, ALL SUCH

SOFTWARE IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMrrED TO, THE WARRANTIES OF MER-

CHANTABH,ITY, FITNESS FOR A PARTICULAR PURPOSE, OR TITLE. The entire risk as to the

quality and _ of a/l such software is with you. Should any of this software prove defective,

you assume the cost of all necessary servicing, repair, of coaection.

NASA, USRA, RIACS, or any other party who may modify or redistribute software received from
RIACS as permitted above shall in no event be liable for any claims or demands by you or any other
party, or any oth_ claim or demand against NASA, USRA, RIACS, or other party due to or arising out

of your use of inability to use any such software, and you agree to indemnify and hold NASA, USRA,

RIACS, and any other pasty who may modify or redis_bute software received from RIACS as permit-
ted above harmless against all such claims.

5. TERMS

By accepting so,ware and this Software Policy document from RIACS, in any form or medium,

you are accepting the terms and conditions set forth in this document.

You may not duplicate, license, distribute, or tnmsfa" any software containing a RIACS copyright
except as expressly l_vided under this Soft'ware Policy. Any attempt to otherwise duplicate, license,
distribute, or transfer this software will terminate your rights under this agreement. However, parties

who have received software from yon with this Software Policy document will not have their rights ter-

minated so long as such _ mmdn in full compliance with the terms and conditions herein.

RIACS
Mail Stop 230-5

NASA Ames Research Center

Moffett Field, CA 94035

